
IMPATIENT MRI: ILLINOIS MASSIVELY PARALLEL ACCELERATION
TOOLKIT FOR IMAGE RECONSTRUCTION WITH ENHANCED

THROUGHPUT IN MRI

Xiao-Long Wu1, Jiading Gai2, Fan Lam1,2, Maojing Fu1,2, Justin P. Haldar1,2, Yue Zhuo2,3,
Zhi-Pei Liang1,2, Wen-Mei Hwu1,2, Bradley P. Sutton2,3

1Department of Electrical and Computer Engineering, 2Beckman Institute, 3Bioengineering Department,

University of Illinois at Urbana-Champaign

ABSTRACT
Much progress has been made in the design of efficient acquisition
trajectories for high spatial and temporal resolution in magnetic
resonance imaging (MRI). Additionally, significant developments
in image reconstruction have enabled the reconstruction of
reasonable images from massively undersampled or noisy data that
is corrupted by a variety of physical effects, including magnetic
field inhomogeneity. Translation of these techniques into clinical
imaging has been impeded by the need for expertise and
computational facilities to realize the potential of these methods.
We present the Illinois Massively Parallel Acceleration Toolkit for
Image reconstruction with ENhanced Throughput in MRI
(IMPATIENT MRI), a reconstruction utility that enables advanced
techniques within clinically relevant computation times by using
the computational power available in low-cost graphics processing
cards.

Index Terms— magnetic resonance imaging, graphics
processing cards, field inhomogeneity, image regularization

1. INTRODUCTION
Since the inception of magnetic resonance imaging (MRI),
technology has continually evolved to improve tradeoffs between
spatial resolution, temporal resolution, signal-to-noise ratio, image
contrast, and examination time. Although it is still relatively
young, MRI has reached a juncture where significant future
advances are limited by traditional data acquisition strategies and
image reconstruction schemes that ignore the non-idealities of the
MR acquisition. Proprietary algorithms and a lack of access to
sufficient computing power in the clinic, and sometimes even in
the laboratory, have held back widespread adoption of advanced
MRI acquisition and reconstruction schemes. This abstract seeks to
remove this barrier to advancement by creating and validating an
open source image reconstruction software package that leverages
the computational power of the graphics hardware that is available
in many PCs and reasonably affordable in stand-alone
computational units.
Throughout the late 1990s and early 2000s, mainstream
microprocessors such as the Intel Pentium and the AMD Opteron
families have driven rapid performance increases and cost
reductions in science and engineering. Development slowed,
however, in 2004 due to constraints on power consumption. Since
that time, many-core processors such as graphics processing units

(GPUs) have led the advances in computational throughput for
science and engineering applications. We are at a crossroads where
computational power is available through multi-core CPU and
many-core GPU-equipped PCs and clusters. However, significant
infrastructure investment is required to enable the medical imaging
community to leverage these computational resources for
furthering imaging science. This abstract introduces the Illinois
Massively Parallel Acceleration Toolkit for Image reconstruction
with ENhanced Throughput in MRI (IMPATIENT MRI), an open
source GPU-based advanced image reconstruction package that
will be available to the public through the internet by the time of
the conference. This package builds on our previous work in GPU-
based acceleration of MR algorithms [1,2], integrating new
features and improved computational efficiency.
IMPATIENT MRI is currently equipped to solve optimization
problems of the form

2 2

2 2

1ˆ argmin
2ρ

ρ Eρ d WCρβ= − + (1)

Where ρ is the vector of image voxel coefficients to be
reconstructed, E is a matrix that models the linear data acquisition
physics for MRI, d is the vector of measured data, C is a
regularization matrix, W is an optional diagonal weighting matrix,
and β is a regularization parameter. This cost function consists of
two terms, one imposing data consistency, and the other enforcing
image regularity. Traditional MRI models data collection using the
Fourier transform, and collects data on a Cartesian (i.e., rectilinear)
grid to allow E to be represented using the fast Fourier transform
(FFT). In contrast, our implementation can more accurately model
advanced data acquisition strategies and non-ideal data acquisition
physics. Our implementation includes capabilities for using non-
Cartesian Fourier sampling trajectories (with and without FFT-
based approximations of the non-uniform Fourier transform), B0
field inhomogeneity compensation [3], and SENSE-based
modeling for multichannel receivers [4]. Regularization can be
important for stabilizing reconstructions when data-consistency
constraints alone do not result in a sufficiently well-posed inverse
problem. Our implementation allows C to be a general sparse
matrix, with additional fast implementations available for certain
commonly-used regularization functions. Use of the W matrix
enables more advanced reconstructions that incorporate prior
information (e.g., [5]) or that solve nonlinear problems [6] (e.g.,
the popular l1 and total variation regularization schemes that appear

69978-1-4244-4128-0/11/$25.00 ©2011 IEEE ISBI 2011

in compressed sensing [7]). In addition, we offer two forms of the
estimation algorithm: one based on a brute force exact approach
and one Toeplitz-based reconstruction scheme [8]. The following
sections describe the implementation of IMPATIENT MRI and
illustrate its computational capabilities.

2. METHODS
2.1 Modeling Data Acquisition
Parallel imaging is performed by placing an array of receiver coils
around the object to be imaged, with each receiver coil lending
spatially distinct reception profiles to the acquired data sets. The
collection of data with different coil sensitivities enables the
reconstruction of alias-free reduced encoding data sets. For the
ith receiver coil, data acquisition can be modeled as FSi, where Si
is a diagonal matrix containing the spatial sensitivity profile of the
coil, and F is a matrix that describes the effects of k-space
encoding and magnetic field inhomogeneity. If the data received
by each coil is concatenated to make a single data vector d, then
the net encoding function is given as: E = [FS1; … ; FSL], for an
acquisition with an L-channel receiver. This parallel imaging is
implemented in the reconstruction code as a wrapper around the
single-coil operations for each of the included algorithms. The
sensitivity maps are stored as a 1D vector to save memory as Si is a
diagonal matrix. Pre-multiplication by Si for the forward transform
and post-multiplication by Si

H for the adjoint operator is performed
by point-wise vector-vector multiplication.

2.2 Incorporation of a priori information
As mentioned above, the regularization term is essential for the
reconstruction of practical MR images. IMPATIENT MRI treats
the regularization matrix C as a general sparse matrix and also
incorporates specialized implementations for commonly used
regularization functions. In this paper, we present the
implementation for a dual direction finite difference operator
which can be expressed as C = [DH ; DV], where DH and DV denote
the finite difference of every pixel pair along the horizontal and
vertical directions of the image respectively. We have explored the
following two ways to implement this regularization function:
1. Form matrices DH, DV explicitly and store them as sparse
matrices. While it may take extra effort to optimize sparse matrix
storage and calculation, sparse matrices are widely applicable to
finite difference calculation along any arbitrary direction and they
are configurable to accommodate multiple forms of regularization
terms.
2. Tailor explicit finite difference calculations according to the
specific choice of C. This alternative requires no effort in the
management of sparse matrix, reduces memory access redundancy
in CUDA kernels and can be easily transformed from C codes into
CUDA codes.
In the current implementations, the weighting matrix W is
predetermined for l2 regularization, and can be automatically
updated for l1 regularization. In the future, we will also enable
customized input option to suit the user’s specific requirements.

2.3 Implementation of Image Reconstruction in the GPU
The key implementation in the GPU code involves different levels
of manipulation and optimizations. Based on our previous work
[2,9], we already adopted the GPU constant memory to avoid
frequent accessing of the slow global memory. In this work, we
further optimize the code and extend it to manage larger images
like 2562 and 5122. Due to limited space, we’ll describe only key
optimizations and provide explanation about the extension for
handling large images. Detailed information can be found in [10].
Tiled processing [11] has been widely used in CUDA
programming to deal with large data. Yet due to the complex
hardware memory hierarchy and the need for algorithm-level
information, this transformation must be manipulated by
programmers. Figure 1 depicts the CPU code snippet and resultant
GPU tiled computation of the adjoint operator of our brute force
approach. The outer loop of the CPU code is removed after
parallelization. Each loop iteration of the outer loop is handled by
one thread. The whole image reconstruction process is conducted
piece by piece or kernel by kernel such that we can take advantage
of the constant memory for frequently accessed data. We choose
the k-space trajectory data for the adjoint operator and the image-
space pixel locations for the forward operator. Since only 64KB is
available for the constant memory, for single-precision
computation with 2-D trajectory data, the maximum number for
tile size would seem to be 8192 which equals to 65536 B / (2
dimension trajectory variables x 4 bytes for single precision data).
Unfortunately, the compiler will implicitly use up several to make
it less than 64KB and to be in favor of regular thread processing,
the number had better be the multiple of power of two. So 4096 is
the final tile size in each kernel invocation (or 2048 for double-
precision calculations).

for (all image-space elements) {
 for (all k-space elements) {

} }
idata[i] += ...

CPU Snippet of Backward Operator (IFT)

for (k: 0->T) {
 idata[i] += ...
}

Tile 0 Tile 1 Tile 2

for (k: T+1->2T) {
 idata[i] += ...
}

for (k: 2T+1->3T) {
 idata[i] += ...
}

Kernel 0 Kernel 1 Kernel 2

Parallelization

Figure 1. Tiled processing on the adjoint operator

For the adjoint operator, the output image-space data is updated
based on the input k-space data. Every output pixel is contributed
to by every input point. A choice can be made on how to approach
the calculation, either from an input-oriented or output-oriented
perspective, as shown in Figure 2. Taking an input-oriented
perspective can cause a big performance loss, due to the sharing of
outputs among threads. More specifically, when multiple threads
are accessing the same output point, their requests have to be
processed in serial in order to avoid erroneous results. For

70

resolving this in GPU programming, atomic operations are widely
used. Although this is faster in the latest Nvidia Fermi architecture,
we can still benefit by avoiding this situation. Therefore, we
choose an output-oriented approach.

Figure 2. Output-oriented vs. input-oriented perspectives [12]

Table 1 lists the optimization guidelines we propose for
performance tuning. We start from checking if the kernel is
compute-bound or memory-bound. More specifically, for compute-
bound kernels the computation operations are the main
performance limiting factor. Hence we can either reduce the
instructions through the suggested code transformation or move the
kernel to a more advanced GPU device. On the other hand,
memory-bound kernels are limited by the data access latency or
bandwidth. Memory latency is the time to access data, which can
be hidden by introducing more instruction mix to achieve
instruction level parallelism. Memory bandwidth is the throughput
that the memory can provide, which can be reduced by using faster
constant or shared memory or fully utilize the given bandwidth by
regularizing the memory access pattern.

Table 1. Optimization guidelines for performance tuning
Compute-bound Memory-bound

Instruction
reduction

Memory latency
hiding

Memory bandwidth
reduction

Reduce branches
and loop counting
(Loop unrolling)

Automatic
instruction
scheduling

(Loop unrolling)

Tiled compute
(Using high-bandwidth

memory)

Common
subexpression

elimination
(Using registers)

Manual instruction
scheduling

(Data prefetching,
Double buffering)

Memory layout
transformation

(Coalescing/Bank
conflicts/Working size)

Reuse data
(Using high-bandwidth

memory)
Again taking the adjoint operator of the brute force algorithm as an
example, which is listed in Figure 1, the kernel is roughly
compute-bound because of 17 floating-point operations and 3
global memory accesses. Since the trajectory data are read-only
and used by all threads, they are stored in the constant memory to
leverage the on-chip high bandwidth. More registers are used to
eliminate calculations from common sub-expressions and to avoid
accesses to global memory. Coalesced memory access is taken into
account, based on the idea of Structure-of-Array memory layout.
Loop unrolling is applied for further parallelism in terms of the
granularities of instructions and loop bodies to hide memory
latency. After these optimizations, we get another ~25% to ~34%
speedup compared to our first GPU code snippet in [2].

3. RESULTS
3.1 Description of data sets
Two different data sets are used to investigate the performance of
the IMPATIENT MRI code.
Data Set 1: The first data set is a high-resolution, multi-shot spiral
functional MRI acquisition acquired on a Siemens 3 T Trio with a
32-channel head coil. A gradient echo acquisition with 25 ms echo
time, 2s TR, and 10 slices of coverage was acquired while a
subject was at rest in accordance with the institutional review
board. The spirals are designed according to [13] using a maximum
gradient amplitude of 22 mT/m and a maximum slew rate of 140
mT/m/ms. The data was acquired at several resolutions with image
sizes of [256, 512]2 with a 10-shot spiral acquistion. The 32-
channel sensitivity maps and magnetic field inhomogeneity map
are acquired from low-resolution 24-shot spiral FLASH
acquisitions with matrix size 1282 and TE’s of 2 and 2.5 ms.
Data Set 2: For the second dataset, we use the Shepp-Logan
phantom to simulate an undersampled reconstruction using one
shot of an 8-shot 2562 spiral trajectory, designed similarly to those
above. The simulations use an 8-channel array and field
inhomogeneity map from the ISMRM data recon challenge for an
abdomen scan (Double Vision data) [14]. A small amount of noise
is added to the data.

3.2 Reconstruction results for CPU/GPU implementations
All the data sets are processed by a machine with Intel Xeon
E5520 CPU having 8 logical threads and one GTX 480 (Fermi)
GPGPU having 480 processing cores.
Data Set 1: Figure 3 gives the reconstruction results for
IMPATIENT MRI using a 5122 matrix size and a full SENSE
reconstruction with and without field inhomogeneity correction.
Notice that the field inhomogeneity correction corrects for the
blurring induced by magnetic field inhomogeneities, as indicated
by the arrows. Table 2 gives the GPU reconstruction time results
from an implementation of the Toeplitz-based method in single-
precision mode with 20 CG iterations. All images are with SENSE
reconstruction and 32-channel data. We have not included data-
independent precomputations in our timing results. A Hanning
window was used for the time segmentation interpolator with 15
time segments used.

Comparison with fast methods for CPU reconstruction
To provide a comparison with a common choice that has been used
to speed up the calculation of the image, we compared our GPU
reconstruction time to a time-segmented non-uniform FFT
(NUFFT) reconstruction including SENSE [3]. The SENSE
NUFFT reconstruction times on a CPU are listed in Table 2.
Data Set 2: Figure 4 compares the reconstruction results from the
GPU reconstruction with and without TV. Figure 4a shows the
sum-of-squares image, which is obtained by reconstructing each of
the 8 coils individually without using sensitivity maps. Then we
combine the images from the 8 different channels using a sum-of-
squares and conclude with a square-root. Figure 4b and Figure 4c
shows the SENSE reconstruction (8 coils) without and with TV,
respectively.

71

Figure 3. Resultant images for a) SENSE reconstruction without field

correction, b) SENSE with FM correction.

Table 2. Execution time between the CPU and GPU implementations.
Data set CPU GPU Speedup

256x256 2.1 hrs 28.55 sec 265

512x512 43.3 hrs 145.54 sec 1071

Figure 4. Results with and without TV regularization for data set 2

4. DISCUSSION
Clinical MRI has been limited by acquisitions that can be quickly
reconstructed using standard FFT approaches and Cartesian
sampling. The IMPATIENT MRI software provides a general
image reconstruction approach for advanced data acquisitions in
MRI, including: non-Cartesian sampling schemes, long image
readouts that suffer from magnetic susceptibility image distortion
artifacts, and parallel multi-coil acquisitions that can result in
reduced image acquisition time. With the availability of this
powerful image reconstruction environment, the use of advanced
image acquisitions is possible while maintaining reconstruction
times that allow for review of image quality while the patient is
still in the imaging suite.

5. CONCLUSION

The IMPATIENT MRI software presented in this abstract will
enable the use of advanced acquisitions in the clinical
environment. Potential improvements in both image quality and
acquisition speed will be available through the use of this
dedicated reconstruction utility that provides flexible and
optimized implementation of advanced image reconstruction
features, including: correction of magnetic field susceptibility-
induced image distortions, parallel imaging using SENSE, and
incorporation of a priori information such as a roughness penalty.

This powerful image reconstruction utility will enable the use of
advanced image acquisition and reconstruction approaches in
clinically feasible reconstruction time. In addition, the open-source
code will allow engineers to implement additional physics specific
to their own applications into the code while leveraging the
advanced reconstruction tools already available.
Software package web site: http://impact.crhc.illinois.edu/mri.php

6. REFERENCES

[1] S. S. Stone, J. P. Haldar, S. C. Tsao, W.-m. W. Hwu, B. P.
Sutton, Z.-P. Liang. “Accelerating Advanced MRI Reconstructions
on GPUs,” J. Parallel Distrib. Comput., vol. 68, pp. 1307-1318,
2008.

[2] Y. Zhuo, X.-L. Wu, J. P. Haldar Z.-P. Liang, W.-m. W. Hwu,
B. P. Sutton. “The Role of GPUs in Advancing Clinical Imaging
with Magnetic Resonance Imaging,” in GPU Computing Gems,
W.-M. W. Hwu Ed., Elsevier Inc., 2011. In Press.
[3] B. P. Sutton, D. C. Noll, J. A. Fessler. “Fast, Iterative Image
Reconstruction for MRI in the Presence of Field Inhomogeneities,”
IEEE Trans. Med. Imaging, vol. 22, pp. 178-188, 2003.
[4] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P.
Boesiger. “SENSE: Sensitivity encoding for fast MRI,” Magn
Reson Med, vol. 42, pp. 952-962, 1999.
[5] J. P. Haldar, D. Hernando, S.-K. Song, and Z.-P. Liang,
“Anatomically Constrained Reconstruction from Noisy Data,”
Magn Reson Med, vol. 59, pp. 810-818, 2008.
[6] M. Nikolova and M. K. Ng, "Analysis of Half-Quadratic
Minimization Methods for Signal and Image Recovery," SIAM J.
Scientific Computing, vol. 27, pp. 937-966, 2005.
[7] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The
application of compressed sensing for rapid MR imaging,” Magn
Reson Med, vol. 58, pp. 1182–1195, 2007.
[8] J. A. Fessler, S. Lee, V. T. Olafsson, H. R. Shi, D.C. Noll.
Toeplitz-based iterative image reconstruction for MRI with
correction for magnetic field inhomogeneity. IEEE Trans Sign
Proc, 53(9): 3393-3402.
[9] Y. Zhuo, X.-L. Wu, J. P. Haldar, W. Hwu, Z.-P. Liang, B. P.
Sutton, “Accelerating Iterative Field-Compensated MR Image
Reconstruction on GPUs,” Proceedings of the IEEE Intl Sym on
Biomedical Imaging (ISBI), April, 2010.
[10] X.-L. Wu, Y. Zhuo, J. Gai, F. Lam, M. Fu, J. P. Haldar, W.
Hwu, Z.-P. Liang, B. P. Sutton, “Advanced MRI Reconstruction
Toolbox with Accelerating on GPU,” Proceedings of the
IS&T/SPIE Electronic Imaging 2011 Conference on "Parallel
Processing for Imaging Applications", January 2011.
[11] D. B. Kirk, W. Hwu, “Programming Massively Parallel
Processors: A Hands-on Approach,” Morgan Kaufmann, 1st
edition (February 5, 2010).
[12] Wen-mei Hwu, “ECE 598 HK : Computational Thinking for
Manycore Processors,” http://courses.engr.illinois.edu/ece598/hk/.
[13] G. H. Glover. Simple analytic spiral K-space algorithm. Magn
Reson Med. 1999 Aug;42(2):412-5.
[14] Data Reconstruction Challenge. 2010 Intl Soc Magn Reson
Med. (ismrm.org/mri_unbound)

a b c

72

