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Abstract—Magnetic susceptibility artifacts, 

including both image distortions and signal losses, 

exist near air/tissue interfaces in the ventral brain 

in standard blood oxygenation level dependent 

(BOLD) functional magnetic resonance imaging 

(fMRI). Several correction methods have been 

developed to compensate for image distortion 

artifacts. However, signal losses still remains a 

significant issue in fMRI, especially in the orbital 

frontal cortex and amygdala. Signal losses result 

from through-plane gradients induced by 

magnetic field inhomogeneity, which cause spin 

dephasing within a voxel. Although several 

acquisition-based approaches exist to address the 

signal losses, they require increased acquisition 

time or patient customization. In this work, we 

propose to build a statistical estimation model 

that includes the effects of magnetic field 

gradients (both within-plane and through-plane 

gradients) and uses an iterative reconstruction 

algorithm to reconstruct images corrected for 

both magnetic field distortion and signal losses. 

We combine our reconstruction approach with a 

recently proposed MRI sequence that acquires 

spiral-in and spiral-out images with a Z direction 

(through-plane) shimming gradient in between to 

enhance the compensation for signal losses. 

Therefore we extend our forward model of the 

MR signal to include the physics of Susceptibility-

induced magnetic Field (SF), Susceptibility-

induced magnetic Field Gradients (SFG), and the 

application of the data acquisition technique with 

Z-Shim Gradients (ZShG). The results show that 

not only signal distortions but also significant 

signal losses can be compensated by considering 

both the modeling of field-inhomogeneity effects 

along with the acquisition with ZShG. 
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I. INTRODUCTION 
 

For functional magnetic resonance imaging (fMRI) 

with blood oxygenation level-dependent (BOLD) 

contrast, the long readout times make the functional 

scan sensitive to magnetic inhomogeneity. Without 

compensation, the susceptibility differences near 

air/tissue interfaces, especially at the ventral brain 

(e.g. above the sphenoid and frontal sinuses), will 

induce field inhomogeneity which leads to 

susceptibility artifacts including image geometric 

distortions and signal losses.  

Several methods exist for compensating the 

susceptibility-induced magnetic field (SF) 

inhomogeneity. Non-iterative, Fourier-based 

correction methods (e.g. Conjugate Phase [1], etc.) 

can compensate for image distortion artifacts, but 

susceptibility-induced signal losses are not 

addressed by these methods. Signal losses result 

from susceptibility-induced magnetic field gradients 

(SFG), which cause spin dephasing within a voxel [2, 

3]. Although several acquisition-based approaches 

(e.g. Hardware-Shim, Tailed RF pulses, Thinner 

Slices, etc.) exist to address the signal losses, they 

require increased acquisition time or patient 

customization. A natural alternative is to build a 

statistical estimation model and use iterative 

algorithm to perform reconstruction while modeling 

the SFG that lead to signal losses. Our previous 

work builds a physical model that accounts for both 

within-plane gradients and through-plane gradients 

of the field inhomogeneity to correct for geometric 

distortions and signal losses [2, 3, 4, 5]. 

When the SFG are too large, the signal losses will 

be too severe so that the signals will be too weak to 

be extracted from the noise. In this case, we might 

benefit from additional information gathered during 

data acquisition. The Z-shim gradients (ZShG) 

technique in data acquisition has been introduced to 

reduce susceptibility artifacts [6], but with a cost of 

increased scan time. A recently proposed method of 

ZShG single-shot MR imaging for spiral scan 

trajectory, which combines spiral-in and spiral-out 
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with a ZShG in between, would decrease the 

acquisition time considerably [7].  

In this work, we introduce an iterative, inverse 

approach to reconstruct fMRI image for 

compensating the susceptibility artifacts based on 

building model with physics of SF, SFG, and the 

application of the acquisition technique with ZShG.  
 

II. THEORY  
 

A. Signal Models 

In MRI scan, the measurements of raw data are 

noisy samples of the signal 
 

( ) ,i i iy s t        1,..., si L               (1) 
 

where s(ti) is the complex MR signal at time ti 

during the readout; εi is the complex white Gaussian 

noise at time ti which is introduced during the data 

acquisition; Ls is the number of k-space samples. 

    For a 2D data acquisition, the signal s(ti) at each ti 

can be written as 
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     (2) 
 

where f(x,y) is a function of the object’s transverse 

magnetization at location (x,y) in the selected slice; 

ω(x,y,z) is the map of field inhomogeneity including 

both the within-plane gradient (x, y-direction) and 

through-plane gradient (z-direction), which can be 

determined by a pre-scan; kx(t) and ky(t) is the k-

space trajectory along x and y directions, and kz(t) 

represents the application of ZShG.  
 

B. Basis expansion    

    Our MR imaging reconstruction challenge is to 

estimate the object f(x,y) that closely matches the 

measurements of raw data yi (i=1,..,Ls). From 

equation (2), we know that this is an ill-posed 

problem, because f(x,y) is a continuous function but 

measurements vector Y=[y1, ...,yLs] is discrete since 

we only have finite samples. We proceed by 

parameterizing the object f(x,y) and field 

inhomogeneity map ω(x,y,z) in terms of basis 

functions ф(x,y) as follows 
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where (xm, yn) is the in-plane center of each voxel; 

ωmn is the off-resonance frequency for each voxel (in 

rad/sec); Xmn, Ymn are the within-plane gradients and 

Zmn is the through-plane gradient within each voxel 

(in rad/(sec·cm)); Δx, Δy are the in-plane dimensions 

of each voxel; M, N are the numbers of in-plane 

voxels along x and y directions respectively; here 

we use a 2D rectangle function as the basis 

function 
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                 (5)  

    Substituting Eq. (3)-(5) into the signal model in 

Eq. (2) and simplifying yields 
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where z0 is the slice location in through-plane 

direction; Ф(kx(ti), ky(ti), kz(ti)) is the 2D Fourier 

Transform of the basis function of ф(x,y) combined 

with the effects of the gradients  of field 

inhomogeneity, which can be written as  
 

( ( ) ( ) ( )) ( )
2

mn i
x i y i z i x i x

X t
k t ,k t ,k t sinc k t

 
    

 
 

( ) ( )
2 2

mn i mn i
y i y z i z

Y t Z t
sinc k t sinc k t
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In our case, the effect of through-plane gradient Zmn  

and the effect of Z-Shim gradient kz(ti) are both 

modeled inside the third sinc(·) term. If the term kz(ti) 

for effect of Z-Shim gradient is equal to zero, then 

the proposed model is equivalent to one of our 

previous approach described in [3]. 
 

C. Iterative Algorithms 

             

Fig. 1 – System Model 

As shown in Fig.1, we can express the measured 

noisy samples in Eq. (1) in matrix-vector form: 
= + = +y S ε Af ε                       (8)  

where y is the measured noisy data samples at the k-

space locations arranged as a single column vector; 

S is the signal modeled as above; f is the object also 

as a single column vector; ε is the complex white 

Gaussian noise; A is the system matrix with 

dimension P×Q (where P is the number of raw data 

samples, Q is the number of spatial locations), which 
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denotes the data acquisition procedure, with the 

elements aij shown as follows 
 

              02 ( )
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             (9) 

    Here, since we use two acquisitions (spiral-in and 

spiral-out with Z-Shim in between), our system 

matrix A is a stacked version, i.e. the system matrix 

Ain for an individual spiral-in acquisition (that 

includes SF map (SFM) and SFG map (SFGM), but 

without ZShG) is stacked on the top of a system 

matrix Aout for a spiral-out acquisition (with SFM, 

SFGM and ZShG explicitly modeled). The magnetic 

susceptibility (in both Ain and Aout) is in the term 

exp(-iωjti), while the magnetic susceptibility 

gradients (in both Ain and Aout) and Z-Shim gradient 

(in Aout only) are both modeled inside the term 

Ф(kx(ti), ky(ti), kz(ti)) as described in Eq. (7).                       

The object f is estimated by minimizing a 

quadratic penalized least-square cost function Ψ(f), 
 

ˆ = argmin ( )
f

f f  

2

2

1
( ) = ( )

2
R f y Af f                (10) 

where ||·||2 is the 2-norm of a matrix (square root of 

sum of square of all the elements); β is the 

regulation parameter; and R(f) is a regularization 

function, which penalizes the roughness of the 

estimated image to control noisy effect, as defined 

2

2

1
( )

2
R f Cf                           (11) 

where the matrix C takes differences between in-

plane neighbouring voxels. This regularization 

function R(f) can decrease the condition number of 

the image reconstruction and therefore speed 

convergence. We apply the iterative algorithm of 

conjugate gradients (CG) for minimizing the cost 

function Ψ(f). The main operations are evaluating 

Ax and A
*
y (where 

*
 denotes the complex conjugate 

transpose) in each iteration [8]. 
 

III. METHODS AND RESULTS 
 

To evaluate the proposed methods, we performed 

simulation, phantom and in vivo studies. Currently 

another commonly used method for susceptibility 

artifacts compensation is non-iterative reconstruction 

using SFM combined with ZShG. Therefore, we 

compared the results of this non-iterative method 

(Md1: NIT+SFM+ZShG) with our proposed 

iterative method (Md2: IT+SFM+SFGM +ZShG). 

A. Simulation study 

The goal of the simulation study is to examine the 

efficiency of the proposed methods for 

compensation of susceptibility artifacts induced by 

the field inhomogeneity. The noisy simulation data y 

was formed by constructing a high-resolution model 

of the human brain at a matrix size of 256×256 and 

then applying Eq. (2) to compute the signal S at the 

desired k-space locations with the white Gaussian 

noise ε. 

To evaluate the quality of resulting image and 

efficiency for the proposed method, we calculated 

the normalized root-mean-squared errors (NRMSEs) 

in the region of interest (ROI) as follows 
 

2

2

ˆ
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where f0 is the reference image; ˆ
cf  is the results of 

estimated images compensated with either of two 

methods. We compared the NRMSE1 between 

reference image and result from the non-iterative 

method (Md1) on one side and the NRMSE2 

between reference image and result from the 

proposed iterative method (Md2) along with various 

values of iteration number Rn, also used non-

compensated image (NC) as control standard to 

compare (shown in Fig. 2).  

As shown in Fig. 2, we examined the first 15 

iterations of the NRMSEs for our iterative method. 

The proposed method (Md2) converges fast in the 

first several iterations, and already has lower errors 

after iteration 5 compared with the non-iterative 

method (Md1). 

Fig. 2 – Evaluation of Simulation Result 

Comparison of the NRMSEs for the resulting image from non-iterative 

method (Md1: NIT+SFM+ZShG) and the resulting image from our 

iterative method (Md2: IT+SFM+SFGM +ZShG) along with iterations Rn. 

Where the green sign “-” shows the non-compensated image (NC) as 

control; the red sign “.-” shows the NRMSE1 between reference image and 
the non-iterative method (Md1); the blue sign “Δ” shows the NRMSE2 

between the reference image and out proposed iterative method (Md2). 
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B. Phantom and in vivo study 

For the phantom and in vivo study, the 

experiments were performed on a head-only 

Siemens Allegra 3T MRI scanner. The data scan 

parameters are given as follows: matrix size of 

64×64, field of view (FOV) of 24 cm, slice thickness 

of 4 mm, TR of 100 ms, TE of 35 ms, number of 

slices of 20.  

The SFM was acquired using a pre-scan of multi-

echo gradient echo sequence with similar slice 

prescription, but twice the resolution in all directions, 

with TR of 200 ms, and TE of 10 and 12.46 ms. In 

the functional scanning, we use a straightforward 

spiral-in-and-out trajectory with ZShG, as described 

in [7]. The spiral-in trajectory, which starts k-space 

sampling from the peripheral region and ends at the 

center, can be joined immediately with the 

traditional spiral-out acquisition without significant 

delay (delay time of 1.5 ms). The ZShG (4 mT/m for 

1 ms) was inserted between the spiral in and out data 

acquisitions. Thus the spiral-in-and-out acquisition 

with ZShG would enhance the compensation for 

signal losses.  

The results of image obtained from phantom and 

in vivo data are shown in Fig 3. We compared the 

results of non-iterative method (Md1) (Fig. 3 (c) in 

both (1) & (2)) with our proposed iterative method 

(Md2) (Fig. 3 (f) in both (1) & (2)). The results 

clearly shows that our proposed iterative method 

(Md2) with compensation of SFM, SFGM, and 

ZShG together have better image quality. 
  

IV. CONCLUSIONS 
     

    The presented results show that the iterative 

reconstruction method combining the susceptibility-

induced magnetic field map (SFM), the gradients of 

field map (SFGM), with the Z-shim gradients (ZShG) 

in data acquisition, reduced susceptibility artifacts of 

both signal distortion and significant signal losses 

and the image quality was improved. 
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Fig. 3 (1) – Phantom study results 
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Fig. 3 (2) – In vivo study results 

In Fig3, for both (1) Phantom study resutls and (2) In vivo study results, 

First row (non-iterative methods): 
(a) Non compensation (NC), (b) NIT+SFM, (c) NIT+SFM+ZShG (Md1). 

Second row (Iterative methods): 

(d) Effect of ZShG, (e) IT+SFM+SFMG, (f) IT+SFM+SFMG+ZShG (Md2). 
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