
 978-1-4244-6498-2/10/$26.00 ©2010 IEEE 578

2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010)

Sparse regularization in MRI iterative reconstruction
using GPUs

Yue Zhuo1, Bradley Sutton2
1Student Member, IEEE, 2Member, IEEE

Department of Bioengineering
University of Illinois at Urbana-Champaign

Urbana, IL, United States

Xiao-Long Wu1, Justin Haldar1, Wen-mei Hwu3, Zhi-
pei Liang3

1Student Member, IEEE, 3Fellow, IEEE
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL, United States

Abstract — Regularization is a common technique used to
improve image quality in inverse problems such as MR image
reconstruction. In this work, we extend our previous Graphics
Processing Unit (GPU) implementation of MR image
reconstruction with compensation for susceptibility-induced field
inhomogeneity effects by incorporating an additional quadratic
regularization term. Regularization techniques commonly impose
the prior information that MR images are relatively smooth by
penalizing large changes in intensity between neighboring voxels.
However, the associated computations often increase data access
and the overall computational load, which can lead to slower
image reconstruction. This motivates us to adopt a GPU-enabled
implementation of spatial regularization using sparse matrices.
This implementation enables the computations for the entire
reconstruction procedure to be done on the GPU, which avoids
the memory bandwidth bottlenecks associated with frequent
communications between the GPU and CPU. Both the CPU and
GPU code of this implementation will be available for release at
the time of the conference.

Keywords- Regularization, Sparse matrix, Graphics Processing
Unit (GPU), CUDA, magnetic resonance imaging (MRI), Iterative
reconstruction

I. INTRODUCTION
Susceptibility-induced magnetic field inhomogeneity exist

near the interface of the air and tissue in the human brain in
functional magnetic resonance imaging (fMRI) [1-5]. These
inhomogeneities lead to susceptibility artifacts in reconstructed
images such as geometric distortion and signal loss. Many
methods are available to compensate for the susceptibility
artifacts [6-14]. We have previously developed and validated
an iterative reconstruction algorithm compensating for the
susceptibility artifacts in MRI. This method relies on an
advanced imaging model including the magnetic field map and
its gradient combined with a conjugate gradient reconstruction
[15-16]. In addition, a regularization term is used in the
iterative reconstruction in order to enforce a spatial smoothness
constraint on the reconstructed image. A sparse representation
of the regularization constraint is used. Sparse representations
are commonly used to represent regularization term that affect
a neighborhood of each voxel and are therefore sparse by
construction.

However, the iterative reconstruction method with field
inhomogeneity correction is time-consuming due to the large
data sizes and the tremendous computational demand for
performing a Fourier-like transform operation without using
FFT. Thus, accelerating the iterative reconstruction method
with field correction adopting the parallel programming facility
on GPU’s can increase the practicality of the algorithm. We
have previously proposed a GPU-enabled implementation
without [17-19] and with [20-21] correcting for magnetic field
inhomogeneities using our iterative reconstruction algorithm.
In this work, we extend the iterative reconstruction by adding a
regularization term to penalize the roughness of an estimated
image. Sparse matrices are represented using the compressed
sparse row (CSR) format for the fast sparse matrix-vector
multiplication on GPUs, as we will describe in the next section.
The addition of the regularization term yields better noise
reduction by enforcing high similarity between neighboring
voxels.

Similar regularization work using sparse matrix-vector
multiplication (SpMV) is referred in [17-18]. However, it was
not using the best known method for SpMV kernels on GPU’s.
Besides, the particular characteristic of the sparse data in our
application are not taken into account either. Yet in the
proposed work in this paper, we choose the best known SpMV
based on the sparse matrix structure in regularization term
kernel for spatial smoothness during the MRI reconstruction in
[22-23].

In the field of the parallel programming on GPU’s, the
sparse matrix operation is challenging due to the huge matrix
sizes and irregular data accesses to memory. Since the number
of nonzero elements in a sparse matrix is very low, special data
compression formats are used to relieve the memory size
limitations from a computer system. This, though, bypasses the
bandwidth and memory limitations, it introduces branch
divergences for GPU hardware during the computation process,
which is one key characteristic of vector machines running
SPMD (Single Program, Multiple Data) programs. A branch
divergence usually occurs when “if-else” control structures are
used in a program. The consequence is that the “if-” and “else-
part” code segments are executed in serial by different threads.
It happens even when only one thread takes one path and the

 579

remaining threads take the other. More specifically, this
doubles the execution time. However, if we can make all
threads take the same path, for instance, to take the “if-” or
“else-part” only, the branch divergence can be skipped.
Therefore, this property of sparse matrix operation makes the
accelerating of parallel programming on GPU difficult and thus
it is also one of the motivations for our work as well.

The rest of the paper is organized as follows. We first
present the methods used, including a description of the
reconstruction algorithm and a discussion on the choice of the
sparse matrix representation for fast GPU implementation.
Then we present the results, analyze the effect of regularization
on image quality in presence of noise and compare the
execution times for CPU and GPU implementations.

II. METHOD
In this section, we briefly recall the iterative reconstruction

algorithm and the original GPU implementation (with no
regularization constraint). Further, we discuss sparse matrix
representations and justify our choice for GPU implementation.

A. Iterative reconstruction
The proposed iterative reconstruction models the field

inhomogeneities in the imaging system. The reconstruction
algorithm aims at finding an estimate of the image intensity, ρ,
defined by:

2
2

ˆ arg min ()F d R
ρ

ρ ρ β ρ= − + (1)

where F is the imaging model (including the magnetic field
map and its gradients); d is the measured k-space data. The
reader is referred to [16, 20] for more details on the imaging
model (also called system matrix). The second term in Eq. (1)
corresponds to the regularization constraint. It ensures that the
image intensity estimate, ρ, verifies the constraint defined by
R(•). In our implementation R(•) is a function used to compare
the intensity of each voxel with the intensity of its neighboring
voxels (i.e., 8-connected neighbors). By nature, the value in R
function is sparse and is therefore represented as sparse matrix.
Note that the weighting factor, beta, is used to control the
trade-off between the least square criterion and the
regularization term. While the first term in Eq. (1) measures the
similarity between the acquired k-space data and the k-space
data simulated using the image estimate and the imaging model,
the second term penalizes images that are not spatially smooth.
Iterative estimation is performed using the conjugate gradient
algorithm as in [24]. We have previously studied the
convergence of the algorithm [16] and shown that 8 to 10
iterations are typically enough to obtain a reasonable image
estimate. In the next section, we describe the GPU
implementation of the conjugate gradient reconstruction
algorithm.

B. GPU implementation of the conjugate gradient algorithm
The recent expansion of graphics processing units (GPU)

has allowed significant speedups in image reconstruction for
medical imaging. Our previous implementation of the
conjugate gradient algorithm (without regularization) has

shown speedups of up to two orders of magnitude compared to
CPU execution time [20-21]. The implementation was
performed on the NVIDIA GeForce GTX 280 GPU, which can
achieve 933 GFLOPS of peak theoretical performance and has
an access bandwidth of 141.7 GB/s. In addition, the on-chip
memory on GTX280 allows for acceleration of data transfer
and reduced need for off-chip memory bandwidth [25]. The
compute unified device architecture 3.0 (CUDA) was used as it
supports the single-program, multiple-data (SPMD) parallel
execution [25-28]. These features are utilized to provide a
GPU-optimized reconstruction algorithm. The traditional CPU
platform used for comparison was a quad-core 2.37 GHz AMD
Opterons with 8 GB of memory.

C. Sparse Matrix-Vector Multiplications on GPU’s
Sparse matrix-vector/-matrix multiplications are widely

used on various fields of scientific computations. The key
features of the problem are 1) the multiplication and addition of
elements from matrices are naturally independent, 2) a big
majority of zero elements do not need computation, and 3) the
matrix size is much larger as compared with the problem of
dense matrix multiplications. These characteristics imply that
this problem can be conquered in a parallel fashion with
suitable algorithm design and hardware support. Sparse matrix-
vector multiplications on GPUs have been well-studied in [22-
23]. Bell and Garland studied several commonly-used matrix
formats, including Diagonal format, ELLPACK (ELL) format,
Coordinate (COO) format, and Compressed Sparse Row (CSR)
format, and their implementations on GPUs. The main point of
these representations is to remove the redundant elements,
namely zero values, while keeping the representations readable,
easy to manipulate, and dense for extraordinarily big matrix
sizes. However, since each format is designed for specific
matrix characteristic in order to have the best performance, it is
important to choose the right format accordingly. For our
application, we choose CSR format and the corresponding
GPU implementation CSR vector kernel from [23].

Figure 1. CSR representation example

Figure 1 shows an example matrix in CSR format. CSR
format takes three arrays to represent a sparse matrix. The first
array Ax stores nonzero values in row-major order. The second
array Aj stores the corresponding column indexes in array Ax.
The numbers of nonzeros in all rows and the corresponding
row indexes are encoded in the third array Ap as paired value
list. For example, the first pair (0, 1) shows the number of
nonzeros in the first row is 1. The second pair (1, 3) shows the
number of nonzeros in the 2nd row is 2. Therefore, the sizes of
Ax and Aj are equivalent to the number of nonzeros. The size
of Ap equals to the number of rows plus one. For a matrix of
size M x N with V nonzero elements, the required space for the
CSR encoding is thus 2V+M+1. Since V is usually small, M

 580

will dominate the final space. In our application, this space
requirement is affordable because M, N, and V are roughly
16K, 4K and 10K, respectively. The space requirement is close
to 36K. Because in our algorithm, we need both a generic
matrix-vector multiplication and a transposed one, we can not
benefit from using a matrix with a smaller row size and larger
column size. However, this characteristic is useful for other
applications using only one of both.

Figure 2. GPU execution behavior on CSR matrix data

Figure 3. Partial data distribution of our matrix data

In the CSR vector kernel, the nonzero elements of each row
in a matrix is served by one warp (32 threads). Thus each row
is manipulated in the unit of 32 nonzero elements and 32
multiplication results are added into the final sum of each row,
as demonstrated in Figure 2. Using Figure 3 as an example
(partial data of our regularization matrix for spatial
smoothness), where the white dots are nonzero elements. For
the simplicity of explanation, here we use 256 threads (8 warps)
as one block to process the given image. For each warp, the 32
threads will be manipulating the nonzero elements on each
specified row until no elements on the row. Then, it jumps to
the next (total warp number + current row ID)th row until no
more rows. For instance, the threads in Warp 0 will jump to the
(8 + 0)th row after it finishes the 0th row. The threads in Warp 1
will jump to the (8+1)th row.

Therefore, as we can see if the standard deviation of the
numbers of nonzeros in all rows is high, the load imbalance
situation can degrade the performance. Taking one extreme
case as an example, if the nonzero elements in the rows
assigned to Warp 0 are very big as compared to others, Warp 0
will be the only active warp in a block after others finish their
jobs soon. This situation, in a sense, is equivalent to declaring a

thread block with only one warp and having resources occupied
by more than one warp. Yet if the standard deviation of the
numbers of nonzeros in all rows is low, most warps can finish
their jobs in a smaller time window. The GPU hardware
resources can be fully utilized.

Figure 3 also shows the data distribution of the matrix data
in our application. As we can see, each row contains roughly
similar number of nonzero elements. By this characteristic,
CSR format is very suitable as the computational format in our
case since little load imbalance can happen.

III. RESULTS AND DISCUSSIONS
Some of the preliminary results are presented in this section.

The performances for the iterative MR image reconstruction
with the regularization between CPU and the fast
implementation on GPU are compared for two tested dataset
with matrix size 64x64x1 and 128x128x1. The image
reconstruction results with the regularization using the
proposed implementation are reported here.

A. Performance comparison
The performance of the iterative reconstruction method on

CPU and proposed accelerating reconstruction with field
inhomogeneity compensation using GPU are compared in
Table 1.

TABLE I. PERFORMANCE COMPARISON BETWEEN GPU AND CPU FOR
SPMV

Data size
Performance comparison for SpMV

GPU time (ms) CPU time (ms) Speedup

64x64x1 3.694 0.705 0.19x

128x128x1 14.611 2.836 0.19x

As shown in Table I, the reconstruction time of the GPU
fast implementation is compared with the reconstruction on
CPU. Although we currently found the GPU-based SpMV
kernel is still slower than the CPU-based version in the
preliminary results, the major performance bottleneck is not
limited by the SpMV kernels, even when the matrix sizes are
increased.

TABLE II. PERFORMANCE COMPARISON BETWEEN GPU AND CPU FOR
OVERALL ITERATIVE CG RECONSTRUCTION

Data size
Performance comparison for CG

GPU time (ms) CPU time (ms) Speedup

64x64x1 124.066 24916.102 200.83x

128x128x1 435.753 95542.203 219.26x

The overall performance for iterative CG reconstruction
with susceptibility gradients are shown in Table II. The results
clearly show that the proposed fast implementation on GPU
achieves speedup about 200 comparing with implementation on
CPU with the tested data set.

 581

B. Image quality comparison
The GPU implementation results are shown in Figure 4 for

comparison between (a) the implementation on CPU and (b)
fast implementation on GPU. We can see that the differences
between the results from GPU and CPU are negligible.
Besides, the image quality was improved by including the
within-plane and through-plane susceptibility gradients into the
reconstruction model. Effects of magnetic field inhomogeneity
(including both geometric distortion and signal loss) are
corrected for especially in the frontal-orbital area (as previously
reported in [15]).

Figure 4. Image comparisons between GPU and CPU

For the computation time, the current preliminary
implementation on GPU with sparse representation is still
slower than the CPU. However, this implementation enables
the regularization procedure executed on GPU instead of on
CPU. And hence this implementation avoids the bottleneck of
the communication between CPU and GPU (for regularization
in the forward and backward operations during each iteration).
Besides, the proposed implementation of regularization for
spatial smoothness can be easily extend to include more
flexible regularization methods, such as support constraints,
reference images, etc. Nevertheless, the preliminary GPU code
for regularization is a promising implementation. We are
currently working on the optimization of the GPU code and
expect to be able to accelerate the computation further when
releasing the code (CPU and GPU code with sparse
regularization).

IV. CONCLUSION
In summary, we present an iterative reconstruction for MR

images using a regularization constraint for spatial smoothness
and implemented on Graphics Processing Unit (GPU)
hardware. In MRI, iterative image reconstruction allows for
accurate modeling of the imaging system and therefore can
improve image quality compared to non-iterative methods. We
have demonstrated in our earlier work the benefits of using an
imaging model including the magnetic field map and its
gradients in order to compensate for the susceptibility artifacts.

In this work we extend our previous reconstruction model
by adding a regularization term in our previously published
GPU-enabled reconstruction method. Regularization can
provide better noise reduction properties and thus better images
when the acquired signal is noisy. Implementation on GPUs
significantly reduces computation times to clinically practical
times. Simulations show that the proposed implementation
enables the regularization on GPU by using the sparse matrix
representation and therefore efficiently enforces spatial
smoothness. Future work includes more detailed quantitative

comparison between GPU and CPU for the sparse
regularization on GPU.

ACKNOWLEDGMENT
We would like to acknowledge the high-performance

computing resources provided by Institute for Advanced
Computing Applications and Technologies (IACAT).

REFERENCES
[1] K. Sekihara, M. Kuroda, H. Kohno. Image restoration from non-

uniform magnetic field influence for direct Fourier NMR
imaging. Phys Med Biol. 1984; Jan; 29(1): p.15-24.

[2] D.C. Noll, C.H. Meyer, J.M. Pauly, D.G. Nishimura, A.
Macovski. “A homogeneity correction method for magnetic
resonance imaging with time-varying gradients,” IEEE Trans
Med Imaging, 1991; 10(4): p.629-637.

[3] P. Jezzard, et al. “Correction for geometric distortion in echo
planar images from B0 field variations,” Magn Reson Med,
1995; 34: p.65-73.

[4] L.C. Man, et al. Improved automatic off-resonance correction
without a field map in spiral imaging. Magn Reson Med, 1997;
37: p.906-913.

[5] H. Schomberg, “Off-resonance correction of MR images,” IEEE
Trans Med Imaging, 1999; 18(6): p.481-495.

[6] D.C. Noll, J.A. Fessler, B.P. Sutton. “Conjugate phase MRI
reconstruction with spatially variant sample density correction,”
IEEE Trans Med Imaging, 2005; 24(3): p.325–36.

[7] C.B. Ahn, J.H. Kim, Z.H. Cho. High-speed spiral-scan echo
planar NMR imaging-I. IEEE Trans Med Imaging, 1986: 5(1):
p.2-7.

[8] C.H. Meyer, B.S. Hu, D.G. Nishimura DG, A. Macovski. Fast
spiral coronary artery imaging. Magn Reson Med, 1992 Dec;
28(2): p.202-13.

[9] J.I. Jackson, C.H. Meyer, D.G. Nishimura, A. Macovski.
Selection of a convolution function for Fourier inversion using
gridding. IEEE Trans Med Imaging. 1991; 10(3): p.473-8.

[10] B.P. Sutton, D.C. Noll, J.A. Fessler. Fast, iterative image
reconstruction for MRI in the presence of field inhomogeneities.
IEEE Trans Med Imaging, 2003 Feb; 22(2): p.178–88.

[11] D.C. Noll, J.A. Fessler, B.P. Sutton. Conjugate phase MRI
reconstruction with spatially variant sample density correction.
IEEE Trans Med Imaging, 2005 Mar; 24(3): p.325-36.

[12] J.A. Fessler, S. Lee, V.T. Olafsson, H.R. Shi, D.C. Noll.
Toeplitz-based iterative image reconstruction for MRI with
correction for magnetic field inhomogeneity. IEEE Trans Signal
Process, 2005 Sep; 53(9): p.3393-3402.

[13] G. Liu, S. Ogawa. EPI image reconstruction with correction of
distortion and signal losses. J Magn Reson Imaging. 2006 Sep;
24(3): p.683-9.

[14] J.A. Fessler, D.C. Noll. Model-based MR Image Reconstruction
with Compensation for Through-Plane Field Inhomogeneity.
Proc. IEEE Intl. Symp. Biomed. Imag, 2007 April; p.920-923.

[15] B.P. Sutton, D.C. Noll, and J.A. Fessler, Compensating for
within voxel susceptibility gradients in BOLD fMRI, Proc Int
Soc Mag Res Med, 2004; p.349.

[16] Y. Zhuo, B.P. Sutton. Iterative Image Reconstruction Model
Including Susceptibility Gradients Combined with Z-shimming
Gradients in fMRI. Proc IEEE Eng Med Biol Soc, Minneapolis,
2009 Sep; p.5721-5724.

[17] S.S. Stone, H. Yi, J. P. Haldar, WmW. Hwu, B.P. Sutton, Z.P.
Liang. How GPUs Can Improve the Quality of Magnetic
Resonance Imaging, First workshop on General purpose
processing on Graphics processing units (GPGPU), 2007 Oct.

[18] S.S. Stone, J.P. Haldar, S.C. Tsao, WmW. Hwu, Z.P. Liang,
B.P. Sutton. Accelerating Advanced MRI Reconstructions on

(a) CPU (b) GPU

 582

GPUs, J Parallel Distrib Comput. 2008 Oct; 68(10): p.1307-
1318.

[19] WmW. Hwu, D. Nandakumar, J.P. Haldar, I.C. Atkinson, B.P.
Sutton, Z.P. Liang, K.P. Thulborn. Accelerating MR Image
Reconstruction on GPUs. Proc IEEE Intl. Symp. Biomed. Imag,
2009 June; p.1283-1286.

[20] Yue Zhuo, Xiao-Long Wu, Justin P. Haldar, Wen-mei Hwu,
Zhi-Pei Liang, Bradley P. Sutton. “Accelerating iterative field-
compensated MR image reconstruction on GPUs”, IEEE ISBI
2010 Proceedings, 2010 Apr.

[21] Yue Zhuo, Xiao-Long Wu, Justin P. Haldar, Wen-mei Hwu,
Zhi-Pei Liang, Bradley P. Sutton. “Multi-GPU Implementation
for Iterative MR Image Reconstruction with Field Correction”,
Proc Int Soc Mag Res Med., 2010; p.2942.

[22] Michael Garland, "Sparse Matrix Computations on Manycore
GPU's," Proceedings of the 45th annual conference on Design
automation, 2008 June.

[23] Nathan Bell and Michael Garland, "Efficient Sparse Matrix-
Vector Multiplication on CUDA, " NVIDIA Technical Report
NVR-2008-004, 2008 Dec.

[24] Fessler, J.A., Booth, S.D., "Conjugate-Gradient Preconditioning
Methods for Shift-Variant PET Image Reconstruction", IEEE
TIP(8), No. 5, 1999 May; p.688-699.

[25] J. Nickolls, I. Buck. NVIDIA CUDA software and GPU parallel
computing architecture. Microprocessor Forum, 2007 May.

[26] S. Ryoo, C. I. Rodrigues, S.S. Baghsorkhi, S.S. Stone, D.B.
Kirk, WmW. Hwu. Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA.
Symp Princ Practice Parallel Programming (PPOPP), 2008.

[27] F. Wajer, K.P. Pruessmann. Major Speedup of Reconstruction
for Sensitivity Encoding with Arbitrary Trajectories. Proc. 9th
Intl. Soc. Mag. Reson. Med, 2001; p.767.

[28] V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J.
Stone, J. Phillips, WmW. Hwu, GPU Clusters for High-
Performance Computing, in Proc. Workshop on Parallel
Programming on Accelerator Clusters, IEEE International
Conference on Cluster Computing, 2009.

