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Abstract — Regularization is a common technique used to 
improve image quality in inverse problems such as MR image 
reconstruction. In this work, we extend our previous Graphics 
Processing Unit (GPU) implementation of MR image 
reconstruction with compensation for susceptibility-induced field 
inhomogeneity effects by incorporating an additional quadratic 
regularization term. Regularization techniques commonly impose 
the prior information that MR images are relatively smooth by 
penalizing large changes in intensity between neighboring voxels. 
However, the associated computations often increase data access 
and the overall computational load, which can lead to slower 
image reconstruction. This motivates us to adopt a GPU-enabled 
implementation of spatial regularization using sparse matrices. 
This implementation enables the computations for the entire 
reconstruction procedure to be done on the GPU, which avoids 
the memory bandwidth bottlenecks associated with frequent 
communications between the GPU and CPU. Both the CPU and 
GPU code of this implementation will be available for release at 
the time of the conference. 
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I.  INTRODUCTION 
Susceptibility-induced magnetic field inhomogeneity exist 

near the interface of the air and tissue in the human brain in 
functional magnetic resonance imaging (fMRI) [1-5]. These 
inhomogeneities lead to susceptibility artifacts in reconstructed 
images such as geometric distortion and signal loss. Many 
methods are available to compensate for the susceptibility 
artifacts [6-14]. We have previously developed and validated 
an iterative reconstruction algorithm compensating for the 
susceptibility artifacts in MRI. This method relies on an 
advanced imaging model including the magnetic field map and 
its gradient combined with a conjugate gradient reconstruction 
[15-16]. In addition, a regularization term is used in the 
iterative reconstruction in order to enforce a spatial smoothness 
constraint on the reconstructed image. A sparse representation 
of the regularization constraint is used. Sparse representations 
are commonly used to represent regularization term that affect 
a neighborhood of each voxel and are therefore sparse by 
construction. 

However, the iterative reconstruction method with field 
inhomogeneity correction is time-consuming due to the large 
data sizes and the tremendous computational demand for 
performing a Fourier-like transform operation without using 
FFT. Thus, accelerating the iterative reconstruction method 
with field correction adopting the parallel programming facility 
on GPU’s can increase the practicality of the algorithm. We 
have previously proposed a GPU-enabled implementation 
without [17-19] and with [20-21] correcting for magnetic field 
inhomogeneities using our iterative reconstruction algorithm. 
In this work, we extend the iterative reconstruction by adding a 
regularization term to penalize the roughness of an estimated 
image. Sparse matrices are represented using the compressed 
sparse row (CSR) format for the fast sparse matrix-vector 
multiplication on GPUs, as we will describe in the next section. 
The addition of the regularization term yields better noise 
reduction by enforcing high similarity between neighboring 
voxels. 

Similar regularization work using sparse matrix-vector 
multiplication (SpMV) is referred in [17-18]. However, it was 
not using the best known method for SpMV kernels on GPU’s. 
Besides, the particular characteristic of the sparse data in our 
application are not taken into account either. Yet in the 
proposed work in this paper, we choose the best known SpMV 
based on the sparse matrix structure in regularization term 
kernel for spatial smoothness during the MRI reconstruction in 
[22-23].  

In the field of the parallel programming on GPU’s, the 
sparse matrix operation is challenging due to the huge matrix 
sizes and irregular data accesses to memory. Since the number 
of nonzero elements in a sparse matrix is very low, special data 
compression formats are used to relieve the memory size 
limitations from a computer system. This, though, bypasses the 
bandwidth and memory limitations, it introduces branch 
divergences for GPU hardware during the computation process, 
which is one key characteristic of vector machines running 
SPMD (Single Program, Multiple Data) programs. A branch 
divergence usually occurs when “if-else” control structures are 
used in a program. The consequence is that the “if-” and “else-
part” code segments are executed in serial by different threads. 
It happens even when only one thread takes one path and the 
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remaining threads take the other. More specifically, this 
doubles the execution time. However, if we can make all 
threads take the same path, for instance, to take the “if-” or 
“else-part” only, the branch divergence can be skipped. 
Therefore, this property of sparse matrix operation makes the 
accelerating of parallel programming on GPU difficult and thus 
it is also one of the motivations for our work as well. 

The rest of the paper is organized as follows. We first 
present the methods used, including a description of the 
reconstruction algorithm and a discussion on the choice of the 
sparse matrix representation for fast GPU implementation. 
Then we present the results, analyze the effect of regularization 
on image quality in presence of noise and compare the 
execution times for CPU and GPU implementations. 

II. METHOD 
In this section, we briefly recall the iterative reconstruction 

algorithm and the original GPU implementation (with no 
regularization constraint). Further, we discuss sparse matrix 
representations and justify our choice for GPU implementation. 

A. Iterative reconstruction 
The proposed iterative reconstruction models the field 

inhomogeneities in the imaging system. The reconstruction 
algorithm aims at finding an estimate of the image intensity, ρ, 
defined by: 

2
2

ˆ arg min ( )F d R
ρ

ρ ρ β ρ= − +                     (1) 

where F is the imaging model (including the magnetic field 
map and its gradients); d is the measured k-space data. The 
reader is referred to [16, 20] for more details on the imaging 
model (also called system matrix). The second term in Eq. (1) 
corresponds to the regularization constraint. It ensures that the 
image intensity estimate, ρ, verifies the constraint defined by 
R(•). In our implementation R(•) is a function used to compare 
the intensity of each voxel with the intensity of its neighboring 
voxels (i.e., 8-connected neighbors). By nature, the value in R 
function is sparse and is therefore represented as sparse matrix. 
Note that the weighting factor, beta, is used to control the 
trade-off between the least square criterion and the 
regularization term. While the first term in Eq. (1) measures the 
similarity between the acquired k-space data and the k-space 
data simulated using the image estimate and the imaging model, 
the second term penalizes images that are not spatially smooth.  
Iterative estimation is performed using the conjugate gradient 
algorithm as in [24]. We have previously studied the 
convergence of the algorithm [16] and shown that 8 to 10 
iterations are typically enough to obtain a reasonable image 
estimate. In the next section, we describe the GPU 
implementation of the conjugate gradient reconstruction 
algorithm. 

B. GPU implementation of the conjugate gradient algorithm 
The recent expansion of graphics processing units (GPU) 

has allowed significant speedups in image reconstruction for 
medical imaging. Our previous implementation of the 
conjugate gradient algorithm (without regularization) has 

shown speedups of up to two orders of magnitude compared to 
CPU execution time [20-21]. The implementation was 
performed on the NVIDIA GeForce GTX 280 GPU, which can 
achieve 933 GFLOPS of peak theoretical performance and has 
an access bandwidth of 141.7 GB/s. In addition, the on-chip 
memory on GTX280 allows for acceleration of data transfer 
and reduced need for off-chip memory bandwidth [25]. The 
compute unified device architecture 3.0 (CUDA) was used as it 
supports the single-program, multiple-data (SPMD) parallel 
execution [25-28]. These features are utilized to provide a 
GPU-optimized reconstruction algorithm. The traditional CPU 
platform used for comparison was a quad-core 2.37 GHz AMD 
Opterons with 8 GB of memory. 

C. Sparse Matrix-Vector Multiplications on GPU’s 
Sparse matrix-vector/-matrix multiplications are widely 

used on various fields of scientific computations. The key 
features of the problem are 1) the multiplication and addition of 
elements from matrices are naturally independent, 2) a big 
majority of zero elements do not need computation, and 3) the 
matrix size is much larger as compared with the problem of 
dense matrix multiplications. These characteristics imply that 
this problem can be conquered in a parallel fashion with 
suitable algorithm design and hardware support. Sparse matrix-
vector multiplications on GPUs have been well-studied in [22-
23]. Bell and Garland studied several commonly-used matrix 
formats, including Diagonal format, ELLPACK (ELL) format, 
Coordinate (COO) format, and Compressed Sparse Row (CSR) 
format, and their implementations on GPUs. The main point of 
these representations is to remove the redundant elements, 
namely zero values, while keeping the representations readable, 
easy to manipulate, and dense for extraordinarily big matrix 
sizes. However, since each format is designed for specific 
matrix characteristic in order to have the best performance, it is 
important to choose the right format accordingly. For our 
application, we choose CSR format and the corresponding 
GPU implementation CSR vector kernel from [23]. 

 

Figure 1.  CSR representation example 

Figure 1 shows an example matrix in CSR format. CSR 
format takes three arrays to represent a sparse matrix. The first 
array Ax stores nonzero values in row-major order. The second 
array Aj stores the corresponding column indexes in array Ax. 
The numbers of nonzeros in all rows and the corresponding 
row indexes are encoded in the third array Ap as paired value 
list. For example, the first pair (0, 1) shows the number of 
nonzeros in the first row is 1. The second pair (1, 3) shows the 
number of nonzeros in the 2nd row is 2. Therefore, the sizes of 
Ax and Aj are equivalent to the number of nonzeros. The size 
of Ap equals to the number of rows plus one. For a matrix of 
size M x N with V nonzero elements, the required space for the 
CSR encoding is thus 2V+M+1. Since V is usually small, M 
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will dominate the final space. In our application, this space 
requirement is affordable because M, N, and V are roughly 
16K, 4K and 10K, respectively. The space requirement is close 
to 36K. Because in our algorithm, we need both a generic 
matrix-vector multiplication and a transposed one, we can not 
benefit from using a matrix with a smaller row size and larger 
column size. However, this characteristic is useful for other 
applications using only one of both. 

Figure 2.  GPU execution behavior on CSR matrix data 

 

Figure 3.  Partial data distribution of our matrix data 

In the CSR vector kernel, the nonzero elements of each row 
in a matrix is served by one warp (32 threads). Thus each row 
is manipulated in the unit of 32 nonzero elements and 32 
multiplication results are added into the final sum of each row, 
as demonstrated in Figure 2. Using Figure 3 as an example 
(partial data of our regularization matrix for spatial 
smoothness), where the white dots are nonzero elements. For 
the simplicity of explanation, here we use 256 threads (8 warps) 
as one block to process the given image. For each warp, the 32 
threads will be manipulating the nonzero elements on each 
specified row until no elements on the row. Then, it jumps to 
the next (total warp number + current row ID)th row until no 
more rows. For instance, the threads in Warp 0 will jump to the 
(8 + 0)th row after it finishes the 0th row. The threads in Warp 1 
will jump to the (8+1)th row. 

Therefore, as we can see if the standard deviation of the 
numbers of nonzeros in all rows is high, the load imbalance 
situation can degrade the performance. Taking one extreme 
case as an example, if the nonzero elements in the rows 
assigned to Warp 0 are very big as compared to others, Warp 0 
will be the only active warp in a block after others finish their 
jobs soon. This situation, in a sense, is equivalent to declaring a 

thread block with only one warp and having resources occupied 
by more than one warp. Yet if the standard deviation of the 
numbers of nonzeros in all rows is low, most warps can finish 
their jobs in a smaller time window. The GPU hardware 
resources can be fully utilized. 

Figure 3 also shows the data distribution of the matrix data 
in our application. As we can see, each row contains roughly 
similar number of nonzero elements. By this characteristic, 
CSR format is very suitable as the computational format in our 
case since little load imbalance can happen. 

III. RESULTS AND DISCUSSIONS 
Some of the preliminary results are presented in this section. 

The performances for the iterative MR image reconstruction 
with the regularization between CPU and the fast 
implementation on GPU are compared for two tested dataset 
with matrix size 64x64x1 and 128x128x1. The image 
reconstruction results with the regularization using the 
proposed implementation are reported here. 

A. Performance comparison 
The performance of the iterative reconstruction method on 

CPU and proposed accelerating reconstruction with field 
inhomogeneity compensation using GPU are compared in 
Table 1. 

TABLE I.  PERFORMANCE COMPARISON BETWEEN GPU AND CPU FOR 
SPMV  

Data size 
Performance comparison for SpMV 

GPU time (ms) CPU time (ms) Speedup 

64x64x1 3.694 0.705 0.19x 

128x128x1 14.611 2.836 0.19x 

 

As shown in Table I, the reconstruction time of the GPU 
fast implementation is compared with the reconstruction on 
CPU. Although we currently found the GPU-based SpMV 
kernel is still slower than the CPU-based version in the 
preliminary results, the major performance bottleneck is not 
limited by the SpMV kernels, even when the matrix sizes are 
increased. 

TABLE II.  PERFORMANCE COMPARISON BETWEEN GPU AND CPU FOR 
OVERALL ITERATIVE CG RECONSTRUCTION 

Data size 
Performance comparison for CG 

GPU time (ms) CPU time (ms) Speedup 

64x64x1 124.066 24916.102 200.83x 

128x128x1 435.753 95542.203 219.26x 

 

The overall performance for iterative CG reconstruction 
with susceptibility gradients are shown in Table II. The results 
clearly show that the proposed fast implementation on GPU 
achieves speedup about 200 comparing with implementation on 
CPU with the tested data set.  
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B. Image quality comparison 
The GPU implementation results are shown in Figure 4 for 

comparison between (a) the implementation on CPU and (b) 
fast implementation on GPU. We can see that the differences 
between the results from GPU and CPU are negligible. 
Besides, the image quality was improved by including the 
within-plane and through-plane susceptibility gradients into the 
reconstruction model. Effects of magnetic field inhomogeneity 
(including both geometric distortion and signal loss) are 
corrected for especially in the frontal-orbital area (as previously 
reported in [15]). 

     
 
 
 
 
 
 
 
 
 

Figure 4.  Image comparisons between GPU and CPU 

For the computation time, the current preliminary 
implementation on GPU with sparse representation is still 
slower than the CPU. However, this implementation enables 
the regularization procedure executed on GPU instead of on 
CPU. And hence this implementation avoids the bottleneck of 
the communication between CPU and GPU (for regularization 
in the forward and backward operations during each iteration). 
Besides, the proposed implementation of regularization for 
spatial smoothness can be easily extend to include more 
flexible regularization methods, such as support constraints, 
reference images, etc. Nevertheless, the preliminary GPU code 
for regularization is a promising implementation. We are 
currently working on the optimization of the GPU code and 
expect to be able to accelerate the computation further when 
releasing the code (CPU and GPU code with sparse 
regularization).     

IV. CONCLUSION 
In summary, we present an iterative reconstruction for MR 

images using a regularization constraint for spatial smoothness 
and implemented on Graphics Processing Unit (GPU) 
hardware. In MRI, iterative image reconstruction allows for 
accurate modeling of the imaging system and therefore can 
improve image quality compared to non-iterative methods. We 
have demonstrated in our earlier work the benefits of using an 
imaging model including the magnetic field map and its 
gradients in order to compensate for the susceptibility artifacts. 

In this work we extend our previous reconstruction model 
by adding a regularization term in our previously published 
GPU-enabled reconstruction method. Regularization can 
provide better noise reduction properties and thus better images 
when the acquired signal is noisy. Implementation on GPUs 
significantly reduces computation times to clinically practical 
times. Simulations show that the proposed implementation 
enables the regularization on GPU by using the sparse matrix 
representation and therefore efficiently enforces spatial 
smoothness. Future work includes more detailed quantitative 

comparison between GPU and CPU for the sparse 
regularization on GPU. 
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