
Multi-GPU Implementation for Iterative MR Image Reconstruction with Field Correction

Y. Zhuo1, X-L. Wu2, J. P. Haldar2, W-M. W. Hwu2, Z-P. Liang2, and B. P. Sutton1
1Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 2Electrical and Computer Engineering, University of Illinois at

Urbana-Champaign, Urbana, IL, United States

INTRODUCTION
Many advanced MRI image acquisition and reconstruction methods see limited application due to high computational cost in MRI. For instance,
iterative reconstruction algorithms (e.g. non-Cartesian k-space trajectory, or magnetic field inhomogeneity compensation) can improve image quality
but suffer from low reconstruction speed. General-purpose computing on graphics processing units (GPU) have demonstrated significant
performance speedups and cost reductions in science and engineering applications. In fact, GPU can offer significant speedup due to MRI
parallelized-data structure, e.g. multi-shots, multi-coil, multi-slice, multi-time-point, etc. We propose an implementation of iterative MR image
reconstruction with magnetic field inhomogeneity compensation on multi-GPUs. The MR image model is based on non-Cartesian trajectory (i.e.
spiral) in k-space, and can compensate for both geometric distortion and some signal loss induced by susceptibility gradients.
THEORY
Field inhomogeneity near air/tissue interfaces at the ventral brain (i.e. orbitofrontal
cortex) leads to susceptibility artifacts, including geometric distortions and signal
loss [1-2]. We have previously reported an imaging model including the physics of
magnetic field inhomogeneity map and its 1st derivate, which can compensate for
both types of susceptibility artifacts [3].
Imaging model: The MR samples d acquired in k-space are described in Eq.(1).
ρ(r) is the image estimate at spatial location r; k(tm) is the non-Cartesian trajectory
in k-space; ω(r)=ω(x,y,z) denotes the magnetic field inhomogeneity, as shown in
Eq(2), including off resonance constant ωn (in Hz), within-plane (Gx,n, Gy,n) and
through-plane (Gz,n) susceptibility gradients (in Hz/cm). The model is discretized
using a 3D rectangle basis function φn(x,y,z). Eq(3) shows Φn(k(tm)), the Fourier
Transform (after discretization) of the basis function at location km, combined with
the field inhomogeneity map and its gradients with Z-shimming gradients.
Iterative CG solver: For image reconstruction, the gridding method can only
compensate for the geometric distortion, but not signal loss (which is
induced by the susceptibility gradients). Alternatively, our iterative
algorithm can model the physics of field inhomogeneity and its gradients. In
this work, we use a conjugate gradient iterative algorithm for reconstruction
including correction for magnetic field inhomogeneity as described earlier.
Therefore signal loss as well as signal distortion can be efficiently reduced
and the resulting image quality is improved. We expected to gain a speedup
by an order of magnitude for multi-GPU implementation.
METHODS
The reconstruction is implemented on a NVIDIA Tesla S1070 which
containing 4 GT200 GPUs. Tesla S1070 yields 4 TFLOPS of peak
performance and 408 GB/s memory access bandwidth, and 240 computing
cores per processor. The reconstruction code is written using the NVIDIA
CUDA 3.0, which supports the single-program, multiple-data (SPMD)
parallel execution. The CPU used for comparison is a dual-core 2.4 GHz
AMD Opterons with 8 GB of memory on operating system Fedora 10.
Here, we extend our previous work [4-5] to field-compensated model described in theory.
In this work, we use up to 4 GPUs to parallelize the computation of multiple slices of 3
different matrix sizes (64x64, 128x128, 256x256). Note that in our implementation, the
data (including k-space trajectory, field map and its gradients) were stored on the GPU
memory for computation of the whole conjugate gradient algorithm, therefore reducing
the time-consuming data transfer and memory allocation. For multi-GPU support, a
scheduler is implemented to start a single slice at a time on each GPU, while keeping a
balanced load for all GPUs.
RESULTS and DISCUSSION
The performance comparison is shown in Table 1-2. For multi-GPUs, the speedup is
373x for 1 GPUs and 560x for 4 GPUs (with 64x64x4 matrix size). We also test different
matrix sizes on 4 GPUs. For matrix size higher than 64x64 in each slice, tiling technique
is implemented when using constant memory to speedup the memory operation.
Therefore, the speedup reduces from matrix size 64x64 to 128x128 in each slice by
considering the time for tiling. The speedup reaches 1102x (three orders of magnitude)
for matrix size of 256x256x4. In summary, the computation time is significantly reduced
by at least two orders of magnitude for multi-GPUs implementation of our iterative MR
image reconstruction algorithm, and the speedup increases along with the number of
working GPUs. The resulting images looks almost identical (Fig.1) between CPU and
GPU, while the reconstruction is done with (a,c) or without (b,d) present of field map
and its gradients. The differences (e,f) between GPU and CPU are negligible (range of
10-4) compared with resulting image intensity (around 1) in (a-d).
CONCLUSION
We proposed a fast multi-GPU-based implementation of our MR imaging model
reconstruction algorithm with susceptibility artifacts compensation. The speedup is up to
two orders of magnitudes and increases along with number of GPUs. The significant
speed improvement reduces computation times down to a clinically acceptable scale.
REFERENCES [1] B.P. Sutton, et al. TMI, 22(2):178-188, 2003. [2] J.A. Fessler, et al. TSP. 51(2):560-574, 2003. [3] Y. Zhuo, et al. EMBC, 2009
Sep; 5721-5724. [4] S.S Stone, et al, JPDDC. 68:1307-1318, 2008. [5] WmW. Hwu, et al, ISBI, 2009, June, 1283-1286.

()() () () ()2 2 di t tm m
md t e eπω πρ − −= ∫ r k rk r r (1)

() () (()
()) ()

1

0

, ,

,

, ,

, , ,

N

n

n X n n Y n n

Z n n n

x y z G x x G y y

G z z x y z

ω ω

ϕ

−

=

= + − + −

+ − ⋅

∑ (2)

()() ()()()
()()()
()()()

,

,

,

n m x m x n m x

y m y n m y

z m z n m z

t sinc k t G t
sinc k t G t
sinc k t G t

= + Δ
⋅ + Δ
⋅ + Δ

Φ k
 (3)

Fig. 1 CPU and 4 GPUs implementation comparisons.
a-b) CPU: without and with FM compensation,
c-d) GPU: without and with FM compensation,
e-f) Difference between CPU and GPU (very small):
without and with FM compensation.

a) CPU: no FM b) CPU: FM

c) GPU: no FM d) GPU: FM

e) Diff: no FM f) Diff: FM

Table.2 Performance comparisons between CPU and 4 GPUs for
different matrix sizes.

64x64x4 128x128x4 256x256x4
CPU GPU CPU GPU CPU GPU

Time (s) 448 0.8 717 2.1 2864 2.6
Speedup \ 560x \ 341x \ 1102x

Table.1 Performance comparisons between CPU and multi-GPUs.

CPU GPU
1 GPU 2 GPU 3 GPU 4 GPU

Time (s) 448 1.20 1.11 0.91 0.80
Speedup \ 373x 403x 492x 560x

Proc. Intl. Soc. Mag. Reson. Med. 18 (2010) 2942

