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INTRODUCTION 
Many advanced MRI image acquisition and reconstruction methods see limited application due to high computational cost in MRI. For instance, 
iterative reconstruction algorithms (e.g. non-Cartesian k-space trajectory, or magnetic field inhomogeneity compensation) can improve image quality 
but suffer from low reconstruction speed. General-purpose computing on graphics processing units (GPU) have demonstrated significant 
performance speedups and cost reductions in science and engineering applications. In fact, GPU can offer significant speedup due to MRI 
parallelized-data structure, e.g. multi-shots, multi-coil, multi-slice, multi-time-point, etc. We propose an implementation of iterative MR image 
reconstruction with magnetic field inhomogeneity compensation on multi-GPUs. The MR image model is based on non-Cartesian trajectory (i.e. 
spiral) in k-space, and can compensate for both geometric distortion and some signal loss induced by susceptibility gradients. 
THEORY  
Field inhomogeneity near air/tissue interfaces at the ventral brain (i.e. orbitofrontal 
cortex) leads to susceptibility artifacts, including geometric distortions and signal 
loss [1-2]. We have previously reported an imaging model including the physics of 
magnetic field inhomogeneity map and its 1st derivate, which can compensate for 
both types of susceptibility artifacts [3]. 
Imaging model: The MR samples d acquired in k-space are described in Eq.(1). 
ρ(r) is the image estimate at spatial location r; k(tm) is the non-Cartesian trajectory 
in k-space; ω(r)=ω(x,y,z) denotes the magnetic field inhomogeneity, as shown in 
Eq(2), including off resonance constant ωn (in Hz), within-plane (Gx,n, Gy,n) and 
through-plane (Gz,n) susceptibility gradients (in Hz/cm). The model is discretized 
using a 3D rectangle basis function φn(x,y,z). Eq(3) shows Φn(k(tm)), the Fourier 
Transform (after discretization) of the basis function at location km, combined with 
the field inhomogeneity map and its gradients with Z-shimming gradients. 
Iterative CG solver: For image reconstruction, the gridding method can only 
compensate for the geometric distortion, but not signal loss (which is 
induced by the susceptibility gradients). Alternatively, our iterative 
algorithm can model the physics of field inhomogeneity and its gradients. In 
this work, we use a conjugate gradient iterative algorithm for reconstruction 
including correction for magnetic field inhomogeneity as described earlier. 
Therefore signal loss as well as signal distortion can be efficiently reduced 
and the resulting image quality is improved. We expected to gain a speedup 
by an order of magnitude for multi-GPU implementation. 
METHODS 
The reconstruction is implemented on a NVIDIA Tesla S1070 which 
containing 4 GT200 GPUs. Tesla S1070 yields 4 TFLOPS of peak 
performance and 408 GB/s memory access bandwidth, and 240 computing 
cores per processor. The reconstruction code is written using the NVIDIA 
CUDA 3.0, which supports the single-program, multiple-data (SPMD) 
parallel execution. The CPU used for comparison is a dual-core 2.4 GHz 
AMD Opterons with 8 GB of memory on operating system Fedora 10. 
Here, we extend our previous work [4-5] to field-compensated model described in theory. 
In this work, we use up to 4 GPUs to parallelize the computation of multiple slices of 3 
different matrix sizes (64x64, 128x128, 256x256). Note that in our implementation, the 
data (including k-space trajectory, field map and its gradients) were stored on the GPU 
memory for computation of the whole conjugate gradient algorithm, therefore reducing 
the time-consuming data transfer and memory allocation. For multi-GPU support, a 
scheduler is implemented to start a single slice at a time on each GPU, while keeping a 
balanced load for all GPUs. 
RESULTS and DISCUSSION 
The performance comparison is shown in Table 1-2. For multi-GPUs, the speedup is 
373x for 1 GPUs and 560x for 4 GPUs (with 64x64x4 matrix size). We also test different 
matrix sizes on 4 GPUs. For matrix size higher than 64x64 in each slice, tiling technique 
is implemented when using constant memory to speedup the memory operation. 
Therefore, the speedup reduces from matrix size 64x64 to 128x128 in each slice by 
considering the time for tiling. The speedup reaches 1102x (three orders of magnitude) 
for matrix size of 256x256x4. In summary, the computation time is significantly reduced 
by at least two orders of magnitude for multi-GPUs implementation of our iterative MR 
image reconstruction algorithm, and the speedup increases along with the number of 
working GPUs. The resulting images looks almost identical (Fig.1) between CPU and 
GPU, while the reconstruction is done with (a,c) or without (b,d) present of field map 
and its gradients. The differences (e,f) between GPU and CPU are negligible (range of 
10-4) compared with resulting image intensity (around 1) in (a-d).  
CONCLUSION 
We proposed a fast multi-GPU-based implementation of our MR imaging model 
reconstruction algorithm with susceptibility artifacts compensation. The speedup is up to 
two orders of magnitudes and increases along with number of GPUs. The significant 
speed improvement reduces computation times down to a clinically acceptable scale. 
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Fig. 1 CPU and 4 GPUs implementation comparisons. 
a-b) CPU: without and with FM compensation, 
c-d) GPU: without and with FM compensation, 
e-f) Difference between CPU and GPU (very small): 
without and with FM compensation. 

a) CPU: no FM    b) CPU: FM

c) GPU: no FM    d) GPU: FM

e) Diff: no FM    f) Diff: FM 

Table.2 Performance comparisons between CPU and 4 GPUs for 
different matrix sizes. 

64x64x4 128x128x4 256x256x4
CPU GPU CPU GPU CPU GPU

Time (s) 448 0.8 717 2.1 2864 2.6
Speedup \ 560x \ 341x \ 1102x

Table.1 Performance comparisons between CPU and multi-GPUs.

CPU GPU
1 GPU 2 GPU 3 GPU 4 GPU

Time (s) 448 1.20 1.11 0.91 0.80
Speedup \ 373x 403x 492x 560x
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