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ABSTRACT 

We propose a fast implementation for iterative MR image 

reconstruction using Graphics Processing Units (GPU). In 

MRI, iterative reconstruction with conjugate gradient 

algorithms allows for accurate modeling the physics of the 

imaging system. Specifically, methods have been reported 

to compensate for the magnetic field inhomogeneity 

induced by the susceptibility differences near the air/tissue 

interface in human brain (such as orbitofrontal cortex). Our 

group has previously presented an algorithm for field 

inhomogeneity compensation using magnetic field map and 

its gradients. However, classical iterative reconstruction 

algorithms are computationally costly, and thus significantly 

increase the computation time. To remedy this problem, one 

can utilize the fact that these iterative MR image 

reconstruction algorithms are highly parallelizable. 

Therefore, parallel computational hardware, such as GPU, 

can dramatically improve their performance. In this work, 

we present an implementation of our field inhomogeneity 

compensation technique using NVIDA CUDA(Compute 

Unified Device Architecture)-enabled GPU. We show that 

the proposed implementation significantly reduces the 

computation times around two orders of magnitude 

(compared with non-GPU implementation) while accurately 

compensating for field inhomogeneity.  

Index Terms — MRI, GPU, CUDA, Conjugate Gradient, 

Iterative reconstruction, Field inhomogeneity. 
 

1. INTRODUCTION 

MRI acquisition data are sampled in the spatial frequency 

domain (k-space) and then reconstructed using Fourier 

Transform (FT) to obtain an estimate of the image. For 

Cartesian trajectories, e.g. EPI (echo planar), image 

reconstruction can be performed by Fast Fourier Transform 

(FFT) which can reduce the computational complexity from 

O(N2) to O(N·log(N)) for N acquisition samples. However, 

FFT cannot be directly used for non-Cartesian sampling 

trajectories. Such non-Cartesian trajectories (e.g. spiral 

trajectory) might be preferable since they offer more 

efficient coverage of the k-space while requiring a shorter 

acquisition time [1-2]. Although the gridding method [3] 

allows for interpolation of non-Cartesian sampling to a 

Cartesian grid, this method suffers from inaccuracy 

introduced by interpolation. Additionally, non iterative 

reconstruction cannot easily take into account degrading 

factors in real imaging systems such as signal loss induced 

by the susceptibility gradients. 

Alternatively, iterative image reconstruction can model the 

physics of the MR system more accurately to account for 

the susceptibility artifacts. Air and tissue in human brain 

have very different susceptibility, which leads to varying 

local magnetic field. This induced magnetic field 

inhomogeneity near the interface of air/tissue (e.g. 

orbitofrontal cortex) can cause geometric distortions and 

signal loss in reconstructed images [4-8]. Methods exist for 

compensating these susceptibility artifacts. Non-iterative, 

Fourier-based correction methods (e.g. Conjugate Phase [7], 

etc.) can compensate for geometric distortion, but 

susceptibility-induced signal losses can not be addressed. 

Signal losses result from susceptibility-induced magnetic 

field inhomogeneity gradients, which cause spin dephasing 

within a voxel [9-12]. A natural alternative is to build a 

statistical estimation model and use an iterative algorithm to 

perform reconstruction while modeling the susceptibility 

gradients inside. Our previous work builds a physical model 

that accounts for both within-plane and through-plane field 

inhomogeneity gradients to correct for geometric distortions 

and signal losses [6, 13, 14]. 

However, these iterative reconstruction methods require 

long computation times. For clinical applications, these 

computation times are not tolerable. Therefore, the 

motivation of this work is to implement our advanced 

imaging model with iterative algorithm on GPU and try to 

reduce the overall computation time while compensating for 

magnetic field inhomogeneity. Our group has implemented 

a simple version of the costly part of the algorithms using 

GPU, achieving significant speedup improvements [15-17]. 

In this work, we elaborate on this earlier work by extending 

the imaging model in order to include the field 

inhomogeneity gradients and thus achieve higher image 

quality. 
 

2. MR IMAGE RECONSTRUCTION WITH 

ITERATIVE CG SOLVER  

In this section, we first briefly introduce our MR imaging 

model for susceptibility artifacts compensation, which 

includes the magnetic field inhomogeneity map and its 

gradients. Secondly, we present the image reconstruction 

using an iterative CG solver with our MR imaging model. 
 



2.1. MR Imaging Model 

The 2D MR measurements acquired in MR imaging data are 

noisy samples of the signal as shown in Eq. (1): 
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where y(tm) denotes the noisy measurements at time tm and 

M is the number of k-space samples;  is the complex white 

Gaussian noise introduced during the data acquisition; and d 

is the complex k-space signal as shown in Eq. (2): 
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In Eq. (2), k(tm) denotes the k-space trajectory at time tm 

which can include the Z-shim imaging gradient as 

previously described in [13, 14]; (r) represents the object 

at location r; (r) = (x,y,z) is the magnetic field 

inhomogeneity map  including the susceptibility gradients. 

(x,y,z) can be parameterized in terms of 3D rectangle basis 

functions as Eq. (3): 
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where N is the number of spatial locations for image voxels; 

n is off-resonance frequency for each voxel (in Hz); GX,n, 

GY,n are the within-plane susceptibility gradients and GZ,n is 

the through-plane susceptibility gradient (in Hz/cm); and 

n(x,y,z) represents the basis function, (xn,yn,zn) denotes the 

location of the voxel center. Therefore, the imaging model 

is discretized as Eq. (4): 
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n(k(tm)) represents the Fourier Transform of the basis 

function n(r) at k-space location km, combined with the 

effects of the field inhomogeneity gradients in x,y,z 

directions and Z-shimming gradients, as in Eq. (5): 
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2.2. Iterative Reconstruction with CG Solver 

For convenience, in the following discussion, we use bold 

fonts to denote the vector representation of a function, such 

that d denotes the column vector representation of d(k(tm)). 

A maximum likelihood image reconstruction can be 

represented as Eq. (6): 

 
2

2
ˆ arg min F d , (6) 

where  denotes a length-N vector for reconstructed image 

voxels; d is a length-M vector represent the data sample; F 

is an M×N matrix modeling the MR imaging process, which 

represents sampling with non-Cartesian trajectory in k-

space. In our imaging model, F also includes the magnetic 

field inhomogeneity map and its gradients, which leads to 

computation difficulty and long execution time due to 

dependence of both time and spatial position as well 

subject-orientation. Each element of system matrix F (at m-

th time sample and n-th spatial position) can be written as: 
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This least square problem for imaging reconstruction yields 

a solution as shown in Eq. (8): 

 
1

ˆ H H
F F F d . (8) 

However, the large matrix size makes direct matrix 

inversion impractical, especially for high resolution 

reconstructions.  

Instead, we use a conjugated gradient (CG) algorithm to 

iteratively find the least-square solution. In our 

reconstruction method with CG solver, the main time-

consuming computations come from calculating the matrix-

vector product F  and F
H
d (denoted as forward operator 

and backward operator in this paper), as defined in Eq. (9): 
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We describe the implementation of this reconstruction 

algorithm using GPU in the next section. 
 

3. IMPLEMENTATION OF CG SOLVER ON GPU  

In this section, we detail the implementation methods of 

iterative CG solver used in this work. 
 

3.1. GPU and CUDA Programming Model 

Recently, graphics processing units (GPU) has led the 

advances in computation for science and engineering 

applications due to highly parallel programming 

performance, such as massive multithreading and high 

memory bandwidth, etc. The MR image reconstruction with 

CG solver is parallelizable and therefore capable to be 

accelerated significantly on GPU. The proposed work is 

implemented on the NVIDIA GeForce GTX 280 GPU. The 

GTX 280 GPU yields 933 GFLOPS of peak theoretical 

performance and 141.7 GB/s memory access bandwidth, 

and also has several on-chip memories so that it can 

efficiently reduce the demands for off-chip memory 

bandwidth [18]. The reconstruction algorithm is based on 

the CUDA (Compute Unified Device Architecture) 3.0 

programming model which newly released by NVIDIA. 

CUDA 3.0 supports the single-program, multiple-data 

(SPMD) parallel execution [18, 19], therefore our proposed 

method can take the advantage of this data-parallel 

programming model. For comparison, the CPU is a quad-

core 2.37 GHz AMD Opterons with 8 GB of memory, and 

the operating system is Fedora 10. 
 

3.2. GPU-based CG Solver Implementation 



A simple version of forward/backward operators (with 

Fourier transform operator only) has been implemented on 

GPU in our previous work [15-17]. Here we extend the 

implementation of the forward/backward operators by 

providing field inhomogeneity compensation as described in 

the imaging model in Section 2.1. Correspondingly, the 

system matrix F becomes to patient-dependent due to 

dependence on magnetic field inhomogeneity map and its 

gradients, and therefore leads to highly computation cost. 

Furthermore, we implement the image reconstruction with 

field inhomogeneity compensation into GPU. Due to 

inclusion of the through-plane susceptibility gradient effects, 

it is difficult to make use of the FFT-based accelerations [8, 

20] that we made use of in our previous work [16]. 

Additionally, in order to avoid the extra memory operating 

time, e.g. consumed by the data transfer between CPU and 

GPU and memory allocation in GPU during iterations, all 

operations of the CG solver are performed on the GPU 

(including forward/backward operators, matrix sum, vector 

dot product, etc.). We use the constant memory caches on 

GPU to store the data during calculation. The GPU 

implementation of MR image reconstruction is especially 

suitable for special functional units (SFU) since the 

algorithm contains heavily use of floating point 

trigonometry functions, e.g. sin and cos operations for 

exponential term in the system model. Although using SFU 

will lower the computation accuracy, this effects is 

negligible as we show in the next section. 
 

4. RESULTS AND DISCUSSION 
 

 

 
 

Fig. 1 Field inhomogeneity map (in Hz) and its gradients (in 

Hz/cm) used in field inhomogeneity compensation. a) Field 

inhomogeneity map; Field inhomogeneity gradients: b) in x-

direction, c) in y-direction, d) in z-direction. 
 

Some of the preliminary results are presented in this section. 

In this paper, we use a matrix size of 64x64 with 4 slices to 

test our implementation. Figure 1 shows one slice of the 

field inhomogeneity map and its gradients used in the image 

reconstruction. One can observe the presence of magnetic 

field inhomogeneity in the orbito-frontal cortex. Figure 2 a, 

c) shows reconstructions obtained without using the field 

map and its gradient; susceptibility artifacts such as 

geometric distortion and signal loss are visible and degrade 

the reconstructed image. Figure 2 b, d) shows the CPU and 

GPU reconstructions obtained using our imaging model 

which compensated for susceptibility artifacts. From figure 

2, we can see that CPU and GPU images are almost 

identical. The error (normalized root-mean-square error) 

between GPU and CPU is 2.94x10-4 without using SFU and 

3.29x10-4 with using SFU. Therefore, we believe the error 

introduced by the SFU on the final result is acceptable. 
 

 

a) CPU: no FM       b) CPU: FM  

c) GPU: no FM       d) GPU: FM   

 

Fig. 2 Image reconstruction comparisons between CPU and 

GPU. a) CPU: without FM compensation, b) CPU: with FM 

compensation, c) GPU: without FM compensation, d) GPU: 

with FM compensation. 
 

The GPU implementation has different performance 

versions by different optimization methods. For example, 

optimization methods include: storing voxel data in 

numerous processor registers to conserve memory 

bandwidth; placing data into constant memory to realize 

cached data access; tiling data based on the constant 

memory size; using hardware trigonometric functions, and 

so on. For simplicity, we provide the performance of two 

groups of optimization in GPU in this paper: with and 

without SFU (the rest optimizations are integrated inside 

both groups and their separate performance can be found in 

[15-17]). The optimization of CPU includes with and 

without paralleling code using multi-thread, etc.  

a) FM 

b) x Gradient       c) y Gradient       d) z Gradient For compassion, the work is also tested in another pair of 

CPU and GPU. Table 1 represents the performance of 

different versions of CPU and GPU implementations with 8 

iterations. So here we refer the tested processors as CPU1 

(AMD Quad Core, 2.37 GHz), CPU2 (Intel Dual Core, 2.4 

GHz) and GPU1 (G80), GPU2 (G280). The results in Table 

1 show that the GPU computational performance up to 284x 

(with SFU) faster than the CPU with non-optimization, and 

81x faster than the CPU with optimization. We believe this 

speedup of reconstruction is attractive to the clinical 

implementation. In addition, the proposed implementation 

of our imaging model on GPU can be easily extended to 

include spatially-varying smoothness constraints or other 

advanced applications to further improve the image quality. 
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