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Magnetic resonance imaging (MRI) is a flexible diagnostic tool, providing image contrast relating to the

structure, function, and biochemistry of virtually every system in the body. However, the technique is

generally slow and has low sensitivity, which limits its application in the clinical environment. Several

significant advances in the past 10 years have created potential solutions to these problems, greatly

increasing imaging speed and combining information from several acquisitions to increase sensitivity.

But the computational time required for these new techniques has limited their use to research settings.

In the clinic, images are needed at the conclusion of a scan to immediately decide if a subject moved, if

the correct location was imaged, or if sufficient signal and contrast were obtained. Therefore, to achieve

clinical relevance, it is necessary to accelerate the advanced MRI image reconstruction techniques.

In this chapter, we focus on a GPU implementation for a fast advanced non-Cartesian MRI recon-

struction algorithm with field inhomogeneity compensation. The parallel structure of the reconstruction

algorithms makes it suitable for parallel programming on GPUs. Accelerating this kind of algorithm

can allow for more accurate image reconstruction while keeping computation times short enough for

clinical use.

44.1 INTRODUCTION
MRI is a relatively new medical imaging modality developed by Professor Paul Lauterbur in the early

1970s, for which he was awarded a Nobel Prize in 2003. MRI can be used to measure the structure and

function of tissue inside of living subjects, such as human brain tissue, by manipulating the magnetiza-

tion of nuclei (typically hydrogen nuclei in water) placed in a highmagnetic field. MRI is a noninvasive

technique that can be manipulated to obtain different types of image contrast. Nowadays, MRI has

become a mature medical imaging technology with many different clinical applications, for example,

functional neuroimaging of the brain and cardiovascular imaging.

However, several challenges exist that limit the application of MRI in the clinical environment. Tra-

ditionally, the main limitations in MRI have been due to the manner in which data are sampled in clinical

scans. Clinical data have been sampled in a Cartesian (i.e., rectilinear) manner to facilitate image
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reconstruction through the use of the fast Fourier transform (FFT). Cartesian sampling can place a

significant limit on acquisition speed. In addition, image artifacts can also exist in MRI owing to

susceptibility-induced magnetic field inhomogeneity. Accurate spatial localization in MRI relies on

having a uniform magnetic field across the region of the patient’s anatomy that is being imaged. Dis-

ruptions to this uniformity (called magnetic field inhomogeneity) can cause artifacts in reconstructed

images, such as spatial distortions and signal loss. Because good acquisition efficiency and image

quality have always been important objectives in MRI, advanced reconstruction techniques that can

accommodate non-Cartesian data acquisition and field inhomogeneity have also become critical issues.

In this chapter, we introduce an MR imaging toolbox that implements a fast reconstruction algo-

rithm using parallel programming on GPUs. This chapter is designed to assist researchers working in

medical imaging and reconstruction algorithm development, especially in the area of MR image recon-

struction. Many advanced acquisition and reconstruction strategies exist in research environments, but

their implementation in the clinic has been impeded by their large computational requirements. Thus,

this chapter describes a platform for the translation of these advanced schemes to the clinic by enabling

clinically-relevant computational times. Furthermore, the speedup of image reconstruction will signif-

icantly influence the application and future development of imaging in a variety of application areas

(e.g., functional brain imaging of depression and memory, detection of cancer, and evaluation of heart

disease). The rest of this chapter is organized as follows: First, we describe recent technologies in MRI

that are easily ported to the GPU to enable clinically useful computational times. Second, the implemen-

tation of the advanced MRI reconstruction algorithm on GPUs is presented. Finally, we will provide the

implementation results and an evaluation on a sample acquisition of a brain slice for functional imaging.

44.2 CORE METHOD: ADVANCED IMAGE RECONSTRUCTION TOOLBOX

FOR MRI

44.2.1 Non-Cartesian Sampling Trajectory

Traditional MRI data acquisition can be viewed as sampling information in the spatial frequency

domain (k-space), and images can be reconstructed using the Fourier transform (FT). For Cartesian

trajectories (Figure 44.1(a)), image reconstruction can be performed using the fast Fourier transform

(FFT) algorithm. Using the FFT can reduce the computational complexity from O(N2) to O(N · log(N))

(a) Cartesian sampling

trajectory

(b) Non-Cartesian sampling

trajectory (spiral) 

FIGURE 44.1

Cartesian and non-Cartesian MRI sampling trajectories in k-space.
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for two-dimensional images, where N is the total number of pixels in the final reconstructed image.

Although the FFT is an efficient reconstruction method, additional techniques are required for the

reconstruction of data sampled on non-Cartesian sampling trajectories. Non-Cartesian sampling tra-

jectories (e.g., the spiral trajectory) might be preferable in some situations because they can offer more

efficient coverage of k-space (Figure 44.1(b)) and shorter acquisition times, and provide additional

opportunities for balancing the spatial and temporal resolution in data acquisition. To maintain some of

the speed advantage of the FFT, the gridding method for non-Cartesian reconstruction [11] allows for

interpolation of non-Cartesian data onto a Cartesian grid. However, this method suffers from inaccu-

racies introduced by interpolation. In addition, gridding methods that use the FFT in reconstruction do

not inherently allow for the modeling of additional physical effects during the data acquisition process.

Thus, gridding can lead to image artifacts, including geometric distortions and signal loss. Compensat-

ing for physical effects such as magnetic field inhomogeneity in the gridding reconstruction requires

further approximations and interpolations. Recently introduced inverse-problem approaches to image

reconstruction formulate a physical model that can incorporate additional physical effects in order to

correct images and reduce distortion.

44.2.2 Susceptibility-Induced Magnetic Field Inhomogeneity Compensation

In MRI reconstruction, advanced imaging models can correct for geometric distortion and some of

the signal loss that is due to susceptibility-induced magnetic field inhomogeneity. Field inhomogeneity

is due to the fact that air and tissue in the human brain have very different magnetic susceptibilities,

which leads to large deviations in the local magnetic field. The susceptibility-induced magnetic field

inhomogeneity near the interface of air/tissue (e.g., in the orbitofrontal cortex) can cause geometric

distortions and signal loss in reconstructed images as reported in [12, 15, 16, 18]. As illustrated in

Figure 44.2, signal loss results from susceptibility-induced magnetic field inhomogeneity gradients

(called susceptibility gradients), which cause dephasing of the signal within a voxel. Methods exist
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FIGURE 44.2

Signal loss (one kind of susceptibility-induced field inhomogeneity artifact) caused by spin dephasing within

a voxel.
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for compensating for these susceptibility artifacts. Noniterative, Fourier-transform-based correction

methods cannot compensate for signal loss, but only for geometric distortion. Statistical estimation

(using a physical model including the effects of susceptibility gradients on the received signal) is a

natural alternative, and reconstructions can be obtained in this framework using iterative algorithms.

Our previous work builds a physical model that accounts for field inhomogeneity and both the

within-plane and through-plane susceptibility gradients to correct for geometric distortions and signal

loss [21, 22], as shown in Eq. 44.1.

d(k(tm))=

∫

ρ(r)e−i2πω(r)tme−2πk(tm)·rdr, (44.1)

where d denotes the complex k-space signal; ρ(r) is the object at location r; k(tm) is the k-space

sampling trajectory (which can include the Z-shimming imaging gradient [9]) at time tm; and ω(r)=

ω(x,y,z) represents the magnetic field inhomogeneity map (including the susceptibility gradients in X,

Y, Z directions), which can be parameterized in terms of 3-D rectangle basis functions as in Eq. 44.2.

ω(x,y,z)=

N−1
∑

n=0

(

ωn+Gx,n (x− xn)+Gy,n (y− yn)+Gz,n (z− zn)
)

·φn(x,y,z). (44.2)

N is the number of spatial image voxels; ωn is off-resonance frequency for each voxel (in Hz); Gx,n,Gy,n

are the within-plane susceptibility gradients and Gz,n is the through-plane susceptibility gradient (in

Hz/cm); ϕn(x,y,z) represents the basis function; and (xn,yn,zn) denotes the location of the center of

the nth voxel. Using this model, geometric distortion and signal loss induced by both within-plane and

through-plane susceptibility gradients [21, 22] can be compensated simultaneously.

44.2.3 Advanced MR Imaging Reconstruction Using Parallel Programming
on GPU

The motivation of this work is to reduce computation time by implementing our advanced MRI

reconstruction method (that compensates for magnetic field inhomogeneity and accommodates non-

Cartesian sampling trajectories) using parallel programming with CUDA on GPUs. On a typical CPU,

the iterative reconstruction method requires long computation times that are not tolerable for clinical

applications. Fortunately, the iterative MRI reconstruction framework can greatly benefit from a fast

GPU-based implementation. Our implementation used techniques to optimize the memory manage-

ment and computation, including use of constant memory with tiling, and use of fast hardware math

functions. These and several other optimization techniques will be discussed in Section 44.3.2. Our

implementation makes use of the iterative conjugate gradient algorithm [6] for matrix inversion. Our

implementation also includes a regularization term that can contain prior information (we use a spatial

smoothness constraint in our implementation using the prior knowledge that MR images are typically

smooth). The computation related to this regularization term was implemented on the GPUs using

sparse matrices (see Section 44.3.2). In contrast to our previous work that implemented regularized

image reconstruction without field inhomogeneity compensation [19], we have currently implemented

the entire conjugate gradient algorithm on the GPU to avoid time-consuming data transfers between the

CPU and the GPU. Finally, we have developed a MATLAB toolbox to facilitate the access to the

GPU reconstruction algorithm, and to visualize the reconstructed images (see Section 44.3.3). This

toolbox was designed to enhance the accessibility of the distributed version of the GPU implementation.
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We will show that our implementation on GPUs achieved a significant speedup with clinically viable

reconstruction times.

44.3 MRI RECONSTRUCTION ALGORITHMS AND IMPLEMENTATION

ON GPUS
In this section, we first introduce the algorithms used for the advanced MRI reconstruction. Then we

present the details of the fast implementation of the algorithm on GPUs using CUDA-based parallel

programming.

44.3.1 Algorithms: Iterative Conjugate Gradients

The implementation of the iterative conjugate gradient (CG) algorithm used in this work is based

on [21], and solves the optimization problem shown in Eq. 44.3:

ρ̂ = argmin
ρ

∥

∥Gρ−d
∥

∥

2

2
+βR(ρ), (44.3)

where G (also called the forward operator) is the system matrix modeling the MR imaging process

(including non-Cartesian sampling and a model for the effects of field inhomogeneity), R is a penalty

functional that encourages spatially smooth reconstructions, and β is a weighting factor. In our imaging

model, G includes the zero order (causing geometric distortion) and first order (causing signal loss)

effects of magnetic field inhomogeneity. These terms modify the relationship between d and ρ so that

a direct FFT is not a good approximation of G even when data is sampled with a Cartesian trajectory.

The process of directly calculating and storing G leads to storage problems with large datasets and long

computation times. Moreover, because the FFT cannot be used (without additional approximations and

algorithmic complexity [7]), reconstruction cannot benefit from the GPU implementations of the FFT

in the CUDA library. Thus, one key point of this work is to solve the problem of calculating the system

matrix G in a reasonable amount of time while keeping storage requirements within the constraints

imposed by the GPU. Our solution for limiting memory usage is to compute the entries of G as they are

used during matrix-vector multiplications and to store the final results of matrix-vector multiplication

rather than the full G matrix. Similarly, in implementation of the CG algorithm (see Table 44.1), we

also only store the entries of GHd instead of GH for each voxel (the so-called backward operator),

where H denotes the complex conjugate transpose.

A solution to reducing computation time is to use multiple threads on the GPU to calculate the

forward/backward operator for each voxel in parallel because the computations for each voxel are inde-

pendent. Our CG implementation is composed of several subfunctions, including the forward operator,

the backward operator, sparse matrix multiplications, and dot products.

In the implementation of the CG algorithm, the most computationally intensive operations are the

matrix-vector multiplications involving G and GH. Other than the forward/backward operators, sig-

nificant computational slowdown occurs if data is transferred between the CPU and the GPU before

and after each call to the forward/backward operators. For example, a data transfer time of 157 ms

was observed for a dataset with N = 642. This is a large amount of time relative to the compu-

tation time, which was 0.152 ms for the forward operator with this dataset (on an NVIDIA G80

GPU). This suggests that all CG computations should be ported to the GPU, with data stored in GPU
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Table 44.1 Operators in conjugate gradients (CG) algorithm.

Title Content 

Conjugate 

graduate 

algorithm 

Gx = G . x 

Cx = C . x 

oldinprod = 0 

for  i = 1  num_iter 

 grad = G
H
 . (y – Gx) – C

H
 . Cx 

 newinprod = grad
H
 . grad 

 gamma = newinprod / oldinprod 

 if  i == 2 

  dir = grad 

 else 

  dir = grad + gamma * dir 

 end 

 oldinprod = newinprod 

 Gdir = G . dir 

 Cdir = C . dir 

 step = (dir
H
 . grad) / (Gdir

H
 . Gdir + Cdir

H
 . Cdir ) 

 Gx = Gx + step . Gdir 

 Cx = Cx + step . Cdir 

 x = x + step . dir 

end 

Input variables 

x – Initial image estimate (typically, a uniform image with value of 0) 

y – Acquired k-space data 

G – System matrix 

C – Sparse matrix for regularization constraint 

num_iter – Number of iterations (typically 8) 

Output variable  x – Final image estimate 

Operator markers 

             Forward operator (Fourier transform) 

             Backward operator (inverse Fourier transform) 

             Sparse matrix-vector multiplication 

             Vector-vector addition 

             Dot product 
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memory. This can tremendously reduce the data transfer between the GPU and CPU during the CG

iterations.

Note that a transpose sparse matrix-vector multiplication is not needed because switching rows and

columns in the sparse matrix representation reduces the problem to just sparse matrix-vector multipli-

cation. As a result, we conclude that there are five CUDA-based kernels that need to be implemented.

They are (1) the forward operator, (2) the backward operator, (3) a sparse matrix-vector multiplication,

(4) a vector dot product, and (5) vector-vector addition. For simplicity, we describe only two of the

important functions in this chapter, namely, the backward operator (the forward operator implemen-

tation is similar), and the regularization term with a sparse representation. Additional implementation

details can be found by examining the code distributed with this book [24].

44.3.2 High-Speed Implementations of the Iterative CG Algorithm on GPU

In this section, we describe the important functions for high-speed implementation of the CUDA-based

image reconstruction on the GPUs. We mainly focus on the implementation of the two kernels, which

are the most representative in terms of GPU technique: the backward operator function and the regular-

ization term (which uses sparse matrix representation). The brute-force approach to the calculation of

the modified Fourier forward/backward transform operators is a good match to the low-memory band-

width and high-computational capacity of GPU-based implementations, and it eliminates the need for

any interpolation approaches in order to include the additional physics in the signal model. In addition,

we briefly describe a multi-GPU implementation for reconstruction of multiple slices.

Kernel Functions on the GPU
In our MRI application, we applied several well-known CUDA optimization techniques from levels

of algorithm implementation to program coding style and performance tuning. Regarding algorithmic

level optimization, we first analyzed the overall program execution process on a CPU and located

two hot spots, the forward/ backward kernels, which take nearly 100% of the whole execution time.

However, as mentioned earlier, because we need multiple iterations for each slice (e.g., eight iterations

in the example used in this chapter), data are potentially transferred back and forth to the GPU side

several times. This justifies our choice to move the data to the GPU memory and perform all calculations

on the GPU.

Backward Operator

The simplified code segment of the backward operator function is shown in Figure 44.3. The outer loop

processes each voxel, and the inner loop performs the calculations for each voxel with time-consuming

mathematical operations (e.g., multiplication, division, and sin/cos functions). As mentioned earlier,

the computation for each image-space voxel is independent of the computation for the other voxels,

and thus, is a good match for parallel programming on the GPU.

To further optimize, the implementation groups together data variables, such as fm, fmgx, fmgy,

and fmgz (the magnetic field map and susceptibility gradients the X, Y, Z directions) to benefit from

memory coalescing because they are often fetched together. And kx, ky, and kz (k-space sampling

trajectories in kx, ky, kz directions) are placed in constant memory to speed up memory access time.

An additional consideration for the memory implementation is data tiling. For example, let us assume

that the number of image-space voxels is N = 642, and the number of k-space samples is M = 3770



716 CHAPTER 44 Using GPUs to Accelerate Advanced MRI Reconstruction

for  (j = 0; j < N; j++) { 
    for  (i = 0; i < M; i++) { 
         scx = sinc(kx[i]/N+ t[i]*fmgx); 
         scy = sinc(ky[i]/N+ t[i]*fmgy); 
         scz = sinc(kz[i]/N+ t[i]*fmgz); 

         arg = (kx[i]*ix + ky[i]*iy + kz[i]*iz) + (fm[j]*t[i]); 
         cosarg = cos(arg); 
         sinarg = sin(arg); 
         iData_r[j]+=scx*scy*scz*((cosarg*kData_r[i])-(sinarg*kData_i[i]));
         iData_i[j]+=scx*scy*scz*((sinarg*kData_r[i])+(cosarg* kData_i[i]));

    } 
}

Field map gradients in X,Y,Z 

Time 

Image space trajectory 

Field map 

Image space data (complex) k-space data (complex) 

k-space trajectory 

FIGURE 44.3

Backward operator in conjugate gradient algorithm.

(for spiral sampling trajectory). For kx, ky, and kz (three vectors with 3770 samples each, and 4 bytes

of storage for each sample), storage uses 45,240 bytes (3770× 3× 4 bytes), which almost fills up the

64 kB of constant memory available on an NVIDIA G80 GPU. And this case is small compared with

typical clinical datasets. Data tiling in constant memory, coincident with coalescing commonly fetched

variables, solves this problem. We list some of the main optimizations in the following to improve the

GPU performance.

1. Use fast hardware math functions to replace sin and cos. This could cause some accuracy loss,

but speeds up the computation significantly. We have previously shown that there is no significant

decrease in accuracy from the use of the fast hardware math functions in [23].

2. Take advantage of memory coalescence by storing variables used by the same portion of code in a

structure.

3. Replace the division operations with right-shift operations.

4. Group kx, ky, and kz and store them as a structure in constant memory with a data tiling technique

if their size exceeds the constant memory capacity.

5. Use registers to hold variables with multiple uses, like kData r and kData i (the real and imaginary

parts of the complex k-space data from the acquisition).

6. Use multiple GPUs for reconstruction of multiple slices to further parallelize the computations

(this avoids communication between GPUs, since reconstruction of a given slice is completely

independent from reconstruction of the other slices).

Additionally, though not currently implemented, additional optimizations could potentially further

increase the performance.

7. Unroll the loop to remove additional branch instructions and use double buffering to get better

mixing of computation and memory accesses. However, when using this technique, one must be

aware that the number of needed registers will increase and that could lower the number of active

blocks on an SM.

8. Dividing the kernel into two parts could lower the computation to memory access ratio (the original

ratio is 32/15 if taking sin/cos as one operation), but allows for reuse of the constant memory for
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Table 44.2 Summary of optimizations used in different versions of our

MRI Toolset.

MRI Toolset Versions Optimizations for the GPU Code

Version 0.1 Using constant memory (Tiling)

Moving out loop constant variables

Using registers

Using fast math functions

Version 0.2a Moving out branches to the CPU side

Loop unrolling

Array of structures vs. Structure of arrays

Computation between double and float values: float literals

the second half kernel. For example, we could let the first four statements, scx, scy, scz, and arg

be the first half kernel and the remaining be the second half kernel. Then, we can reuse constant

memory to store kData r and kData i. This method can be applied in conjunction with method 7.

Table 44.2 shows a summary of optimizations used in different versions of our MRI Toolset.

Sparse-Matrix Vector Multiplication (SpMV)

Sparse matrix-vector multiplications are widely used for many scientific computations, such as graph

algorithms [1], graphics processing [2, 3], numerical analysis [10], and conjugate gradients [14]. This

problem is essentially a simple multiplication task where the worst case (dense matrix) has a com-

plexity of O(N3). The key feature of the problem is that the majority of the elements of the matrix

are zero and do not require explicit computation. In this section, we will focus on the format-selection

according to sparse data format. We surveyed several recent research works on SpMV done on NVIDIA

GPU platforms, including [1–5, 8]. The algorithms for SpMV are greatly affected by the sparse matrix

representation so we considered several popular formats, such as the Intel MKL and BSR (block com-

pressed sparse row) sparse matrix storage formats [10], CSR (Compressed Sparse Row) [8] and CSC

(Compressed Sparse Column) formats, and Matrix Market Coordinate Format (MMCF) [14]. We aim

at finding a balance between programmability for parallelism and efficiency for speed. The main objec-

tive of these representations is to remove the redundant elements (namely, zero values), while keeping

the representations readable, easy to manipulate, and compact enough during operations to handle

extremely large matrix sizes. Because each format is designed for specific matrix characteristics in

order to have the best performance, it is important to choose the right format. For our application, we

chose the CSR format and the corresponding GPU CSR vector kernel implementation.

In the CSR vector kernel, the nonzero elements of each row in a matrix are served by one warp (32

threads). Thus, each row is manipulated in the unit of 32 nonzero elements, and 32 multiplication results

are added into the final sum of each row. Therefore, if the standard deviation of the numbers of nonzeros

in all rows is higher than a warp size, the load imbalance can degrade performance. Each row of the

sparse matrix in our regularization term contains roughly a similar number of nonzero elements. This

is due to the form of the spatial regularization, which places local constraints on neighboring voxels.

Because of this characteristic, the CSR format is very suitable for our case because little load imbalance

can happen. Developers should choose a suitable sparse matrix format based on their application.
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Multi-GPU Implementation
The multi-GPU-based MRI reconstruction method is implemented on an NVIDIA Tesla S1070 that

contains four GT200 GPUs. As mentioned earlier, to reduce the problem of memory bandwidth bottle-

necks caused by communications between the GPU and CPU, we reconstruct each slice of the MRI data

on one GPU. Therefore, a multithread approach is employed. Each CPU thread is assigned a slice to

process, and a GPU that will be used for the kernels. Assignments are designed to preserve a balanced

load for all GPUs, as shown in Figure 44.4. We are currently working on a dynamic queue to optimize

this multi-GPU implementation. This dynamic queue will replace static assignment of slices to GPUs

by dynamically dispatching slices to available GPUs [20]. Significant improvement is expected to be

obtained, especially if the GPUs have different performance levels.

44.3.3 MATLAB Toolbox for MRI Reconstruction

In order to allow easy use of our GPU reconstruction program, we have developed a MATLAB (a

widely used computational environment [13]) toolbox to perform GPU-enabled reconstruction and

Slice1

Slice7
Slice3

GPU1 CPU core 1

CPU core 3

CPU core 2

CPU core 4GPU3

GPU2

GPU4

Slice5
Slice9

Slice2

Slice8
Slice4

Slice6
Slice10

FIGURE 44.4

Assignment is designed to keep a balanced load among multi-GPUs (e.g., four GPUs connected with a

quad-core CPU).

FIGURE 44.5

MATLAB graphic user interface (GUI) to perform iterative MR image reconstruction from MATLAB.
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(a) 3-D cross-section view (b) Head contours and

surface view

(c) Comparison between two datasets with values

for synchronized cursors

FIGURE 44.6

Visualization functions in the advanced MR imaging toolbox.

conveniently visualize the reconstruction results without exporting binary files from the reconstruc-

tion program to a separate visualization program. The first part of the toolbox consists of a MATLAB

interface to the GPU program (Figure 44.5). This interface aims to decrease the effort required for new

users to start using the reconstruction code, and increase the likelihood of widespread use of our code

(in particular) and GPUs in MRI reconstructions (in general). By incorporating the reconstruction code

into MATLAB, the iterative reconstruction can be called from MATLAB as part of a complex program

(including data pre- or post-processing) with little effort. Additionally, we provide visualization tools

(Figure 44.6) for MATLAB along with export tools to common visualization formats.

44.4 FINAL RESULTS AND EVALUATION
In this section, we present the results obtained with our GPU-based reconstruction method. The CPU

and GPU code from our MRI Toolset version 0.1 is available at [24]. In this release, we applied the

techniques of tiling with constant memory, loop invariant code motion, storing variables in registers,

and using single-precision floating-point computations on the GPU kernels. In the CPU kernels, we
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Table 44.3 Performance comparison between CPUs and GPUs.

a. Execution time of the key kernels with single thread enabled

CPU GPU

Execution CPU Execution Execution Speedup

Kernels Time (ms) Time (%) Time (ms) (CPU/GPU)

Forward operator 25,648.82 52.29 70.41 364.28

Backward operator 23,401.77 47.71 45.12 518.66

Total execution time 49,051.58 100.00 123.15 398.31

b. Execution time of the key kernels with four threads enabled

CPU GPU

Execution CPU Execution Execution Speedup

Kernels Time (ms) Time (%) Time (ms) (CPU/GPU)

Forward operator 6,698.27 52.41 69.69 96.12

Backward operator 6,080.66 47.58 44.98 135.19

Total execution time 12,780.04 100.00 121.31 105.35

tried to use OpenMP to parallelize the CPU reconstruction because it accelerates processing time for

CPU code. However, the error rate caused by an OpenMP-enabled CPU kernel was not acceptable

compared with that of the single-thread version. The normalized root mean squared error measured

between CPU and GPU reconstruction was around 10−3 when using a single-threaded CPU code, and

up to around 0.03 when using OpenMP.

For evaluation, a computation time comparison between CPUs and GPUs is shown in Table 44.3 (for

matrix size of 642 with 8 iterations). This comparison uses our MRI Toolset v0.2a, running on a dual-

core AMD Opteron Processor 2216 (CPU) and an NVIDIA GTX 280 (GPU). As shown in Table 44.3,

the speedups of our implementation (for the advanced MRI reconstruction) on the GPU reach 398x

compared with a single-thread-enabled CPU, and 105x compared with a four-thread-enabled CPU.

44.5 CONCLUSION AND FUTURE DIRECTIONS
Through the use of GPU hardware, we were able to accelerate an advanced image reconstruction algo-

rithm for MRI from around a minute to around a tenth of a second. This reconstruction speed would

provide images in the time frames necessary for clinical application. Thus, the use of GPUs will enable

improved trade-offs between data acquisition time, signal-to-noise ratio, and the severity of artifacts

owing to nonideal physical effects during the MRI imaging experiment.

Follow-up directions include CUDA-based parallel programming on GPUs for an advanced MR

imaging reconstruction method combining field inhomogeneity compensation with parallel imaging

(e.g., the SENSE algorithm [17]). In parallel imaging, information is collected simultaneously from
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multiple receivers, and this additional information can be used to significantly reduce sampling

requirements and greatly accelerate data acquisition.
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